Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 12 - 18, 25.03.2020
https://doi.org/10.32323/ujma.634491

Abstract

References

  • [1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438.
  • [2] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
  • [3] A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT, 54 (2014), 937-954.
  • [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. App., 1 (2015), 73-85.
  • [5] H. Hosseini, R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Wave Random Complex, 27 (2017), 628-636.
  • [6] H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dyn., 81 (2015), 1569-1574.
  • [7] J. Jia, H. Wang, A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J. Comput. Phys., 310 (2016), 63-84.
  • [8] J. Jia, H. Wang, Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions, J. Comput. Phys., 293 (2015), 359-369.
  • [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
  • [10] S-J Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC, Boca Raton, 2004.
  • [11] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
  • [12] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-28.
  • [13] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Frac. Calc. Appl. Anal., 4 (2001), 153-192.
  • [14] M. Meerschaert, Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90.
  • [15] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solutions and Some of their Applications, Academic Press, San Diego, 1999.
  • [16] F. Xu, Y. Gao, W. Zhang, Construction of analytic solution for time-fractional Boussinesq equation using iterative method, Adv. Math. Phys., 2015, Article ID 506140, 7 pages.
  • [17] Q. Xu, J.S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52 (2014), 405-423.
  • [18] M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1.
  • [19] M. Yavuz, N. Özdemir, On the solutions of fractional Cauchy problem featuring conformable derivative, Proceedings of ITM Web of Conferences, EDP Sciences, (2018), 01045.
  • [20] M. Yavuz, B. Yaşkiran, Homotopy methods for fractional linear/nonlinear differential equations with a local derivative operator, Balikesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2018), 75-89.
  • [21] H. Yang, A new high-order method for the time-fractional diffusion equation with a source, J. Frac. Calc. Appl., 11 (2020), 111-129.
  • [22] H. Yang, J. Guo, J.-H. Jung, Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation, Appl. Math. Lett., 64 (2017), 205-212.
  • [23] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976-A3000.
  • [24] H. Zhang, X. Jiang, M. Zhao, R. Zheng, Spectral method for solving the time fractional Boussinesq equation, Appl. Math. Lett., 85 (2018), 164-170.

Homotopy Analysis Method for the Time-Fractional Boussinesq Equation

Year 2020, Volume: 3 Issue: 1, 12 - 18, 25.03.2020
https://doi.org/10.32323/ujma.634491

Abstract

In this paper, the exact and approximate analytical solutions to the time-fractional Boussinesq equation are constructed using the homotopy analysis method. Several examples about the fourth-order and sixth-order time-fractional Boussinesq equations show the flexibility and efficiency of the method. Furthermore, by choosing an appropriate value for the auxiliary parameter $h$, we can obtain the $N$-term approximate solution with improved accuracy.

References

  • [1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424-438.
  • [2] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
  • [3] A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT, 54 (2014), 937-954.
  • [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. App., 1 (2015), 73-85.
  • [5] H. Hosseini, R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Wave Random Complex, 27 (2017), 628-636.
  • [6] H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dyn., 81 (2015), 1569-1574.
  • [7] J. Jia, H. Wang, A fast finite volume method for conservative space-fractional diffusion equations in convex domains, J. Comput. Phys., 310 (2016), 63-84.
  • [8] J. Jia, H. Wang, Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions, J. Comput. Phys., 293 (2015), 359-369.
  • [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
  • [10] S-J Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC, Boca Raton, 2004.
  • [11] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533-1552.
  • [12] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23-28.
  • [13] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Frac. Calc. Appl. Anal., 4 (2001), 153-192.
  • [14] M. Meerschaert, Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90.
  • [15] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solutions and Some of their Applications, Academic Press, San Diego, 1999.
  • [16] F. Xu, Y. Gao, W. Zhang, Construction of analytic solution for time-fractional Boussinesq equation using iterative method, Adv. Math. Phys., 2015, Article ID 506140, 7 pages.
  • [17] Q. Xu, J.S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Numer. Anal., 52 (2014), 405-423.
  • [18] M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1.
  • [19] M. Yavuz, N. Özdemir, On the solutions of fractional Cauchy problem featuring conformable derivative, Proceedings of ITM Web of Conferences, EDP Sciences, (2018), 01045.
  • [20] M. Yavuz, B. Yaşkiran, Homotopy methods for fractional linear/nonlinear differential equations with a local derivative operator, Balikesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (2018), 75-89.
  • [21] H. Yang, A new high-order method for the time-fractional diffusion equation with a source, J. Frac. Calc. Appl., 11 (2020), 111-129.
  • [22] H. Yang, J. Guo, J.-H. Jung, Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation, Appl. Math. Lett., 64 (2017), 205-212.
  • [23] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013), A2976-A3000.
  • [24] H. Zhang, X. Jiang, M. Zhao, R. Zheng, Spectral method for solving the time fractional Boussinesq equation, Appl. Math. Lett., 85 (2018), 164-170.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

He Yang 0000-0001-9608-4920

Publication Date March 25, 2020
Submission Date October 18, 2019
Acceptance Date February 10, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Yang, H. (2020). Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Universal Journal of Mathematics and Applications, 3(1), 12-18. https://doi.org/10.32323/ujma.634491
AMA Yang H. Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Univ. J. Math. Appl. March 2020;3(1):12-18. doi:10.32323/ujma.634491
Chicago Yang, He. “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”. Universal Journal of Mathematics and Applications 3, no. 1 (March 2020): 12-18. https://doi.org/10.32323/ujma.634491.
EndNote Yang H (March 1, 2020) Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Universal Journal of Mathematics and Applications 3 1 12–18.
IEEE H. Yang, “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”, Univ. J. Math. Appl., vol. 3, no. 1, pp. 12–18, 2020, doi: 10.32323/ujma.634491.
ISNAD Yang, He. “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”. Universal Journal of Mathematics and Applications 3/1 (March 2020), 12-18. https://doi.org/10.32323/ujma.634491.
JAMA Yang H. Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Univ. J. Math. Appl. 2020;3:12–18.
MLA Yang, He. “Homotopy Analysis Method for the Time-Fractional Boussinesq Equation”. Universal Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 12-18, doi:10.32323/ujma.634491.
Vancouver Yang H. Homotopy Analysis Method for the Time-Fractional Boussinesq Equation. Univ. J. Math. Appl. 2020;3(1):12-8.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.