Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 4, 138 - 143, 23.12.2020
https://doi.org/10.32323/ujma.743949

Öz

Kaynakça

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73–74.
  • [3] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [4] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [5] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47–63.
  • [6] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1) (2003), 223–231.
  • [7] F. Moricz, Statistical limits of measurable functions, Analysis, 24(1) (2004), 1–18.
  • [8] E. D¨undar, Y. Sever, Multipliers for bounded statistical convergence of double Sequences, Int. Math. Forum, 7(52) (2012), 2581–2587.
  • [9] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat, 28(8) (2014), 1567–1574, DOI 10.2298/FIL1408567U.
  • [10] F. Nuray, U. Ulusu, E. Dündar, Lacunary statistical convergence of double sequences of sets, Soft Comput., 20 (2016), 2883–2888, DOI 10.1007/s00500- 015-1691-8.
  • [11] S. Yegül, E. Dündar, On statistical convergence of sequences of functions in 2-normed spaces, J. Classical Anal., 10(1) (2017), 49–57.
  • [12] S. Yegül, E. Dündar, Statistical convergence of double sequences of functions and some properties in 2-normed spaces, Facta Univ. Ser. Math. Inform., 33(5) (2018), 705–719.
  • [13] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49.
  • [14] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math., 25 (1973), 973–978.
  • [15] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1) (1986), 161–166.
  • [16] I.J. Maddox, Inclusions between FK spaces and Kuttner’s theorem, Math. Proc. Cambridge Philos. Soc., 101(3) (1987), 523–527.
  • [17] A. Aizpuru, M.C. Listan-Garcia, F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37(4) (2014), 525–530.
  • [18] A. Aizpuru, M.C. Listan-Garcia, F. Rambla-Barreno, Double density by moduli and statistical convergence, Bull. Belg. Math. Soc. Simon Stevin, 19(4) (2012), 663–673.
  • [19] V.K. Bhardwaj, S. Dhawan, f-statistical convergence of order a and strong Ces`aro summability of order a with respect to a modulus, J. Ineq. Appl., 2015(332) (2015).
  • [20] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18(1-2) (1990), 18–56.
  • [21] M. Bohner, A. Peterson, Dynamic Equations On Time Scales: An Introduction With Applications, Birkh¨auser, Boston, 2001.
  • [22] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl., 4(4) (2001), 535–557.
  • [23] G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285(1) (2003), 107–127.
  • [24] M. Bohner, G.S. Guseinov, Partial differentiation on time scales, Dynam. Syst. Appl., 13 (2004) , 351–379.
  • [25] M. Bohner, G. S. Guseinov, Multiple Lebesgue integration on time scales, Adv. Difference Equ., 2006 (2006), Article ID 26391.
  • [26] A. Cabada, D.R. Vivero, Expression of the Lebesgue D􀀀integral on time scales as a usual Lebesgue integral: Application to the calculus of D􀀀antiderivatives, Math. Comput. Model., 43(1-2) (2006), 194–207.
  • [27] M.S. Seyyidoğlu, N.O. Tan, A note on statistical convergence on time scale, J. Inequal. Appl., 2012(219) (2012).
  • [28] C. Turan, O. Duman, Statistical convergence on time scales and its characterizations, Springer Proc. Math. Stat., 41 (2013), 57–71.
  • [29] C. Turan, O. Duman, Convergence methods on time scales, AIP Conf. Proc., 1558 (2013), 1120–1123.
  • [30] C. Turan, O. Duman, Fundamental properties of statistical convergence and lacunary statistical convergence on time scales, Filomat, 31(14) (2017), 4455–4467.
  • [31] Y. Altın, H. Koyunbakan, E. Yılmaz, Uniform statistical convergence on time scales, J. Appl. Math., 2014 (2014).
  • [32] M. Çınar, E. Yılmaz, Y. Altın, T. Gülsen, Statistical convergence of double sequences on product time scales, Analysis, 39(3) (2019), 71–77.
  • [33] B. Sözbir, S. Altundağ, Weighted statistical convergence on time scale, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 26 (2019), 137–143.
  • [34] B. Sözbir and S. Altundağ, ab-statistical convergence on time scales, Facta Univ. Ser. Math. Inform., 35(1) (2020), 141–150.
  • [35] B. Sözbir, S. Altundağ, M. Başarır, On the (Delta,f)-lacunary statistical convergence of the functions, Maltepe J. Math., 2(1) (2020), 1–8.
  • [36] N. Turan, M. Başarır, On the ${\Delta _g}$-statistical convergence of the function defined time scale, AIP Conf. Proc., 2183, 040017 (2019), https://doi.org/10.1063/1.5136137.
  • [37] N. Tok, M. Başarır, On the $\lambda _h^\alpha$-statistical convergence of the functions defined on the time scale, Proc. Int. Math. Sci., 1(1) (2019), 1–10.
  • [38] M. Başarır, A note on the $\left( {\theta ,\varphi } \right)$-statistical convergence of the product time scale, Konuralp J. Math., 8(1) (2020), 192–196.
  • [39] M. Başarır, A note on the $\left( {\lambda ;v} \right)_h^\alpha $-statistical convergence of the functions defined on the product of time scales, Azerbaijan Journal of Mathematics, 2020, under communication.

On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale

Yıl 2020, Cilt: 3 Sayı: 4, 138 - 143, 23.12.2020
https://doi.org/10.32323/ujma.743949

Öz

In this paper, we first define a new density of a $\Delta $-measurable subset of a product time scale ${\Lambda ^2}$ with respect to an unbounded modulus function. Then, by using this definition, we introduce the concepts of $\Delta _{{\Lambda ^2}}^f$-statistical convergence and $\Delta _{{\Lambda ^2}}^f$-statistical Cauchy for a $\Delta $-measurable real-valued function defined on product time scale ${\Lambda ^2}$ and also obtain some results about these new concepts. Finally, we present the definition of strong $\Delta _{{\Lambda ^2}}^f$-Cesaro summability on ${\Lambda ^2}$ and investigate the connections between these new concepts.

Kaynakça

  • [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2(1) (1951), 73–74.
  • [3] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [4] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [5] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47–63.
  • [6] M. Mursaleen, O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1) (2003), 223–231.
  • [7] F. Moricz, Statistical limits of measurable functions, Analysis, 24(1) (2004), 1–18.
  • [8] E. D¨undar, Y. Sever, Multipliers for bounded statistical convergence of double Sequences, Int. Math. Forum, 7(52) (2012), 2581–2587.
  • [9] U. Ulusu, E. Dündar, I-lacunary statistical convergence of sequences of sets, Filomat, 28(8) (2014), 1567–1574, DOI 10.2298/FIL1408567U.
  • [10] F. Nuray, U. Ulusu, E. Dündar, Lacunary statistical convergence of double sequences of sets, Soft Comput., 20 (2016), 2883–2888, DOI 10.1007/s00500- 015-1691-8.
  • [11] S. Yegül, E. Dündar, On statistical convergence of sequences of functions in 2-normed spaces, J. Classical Anal., 10(1) (2017), 49–57.
  • [12] S. Yegül, E. Dündar, Statistical convergence of double sequences of functions and some properties in 2-normed spaces, Facta Univ. Ser. Math. Inform., 33(5) (2018), 705–719.
  • [13] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5 (1953), 29–49.
  • [14] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Can. J. Math., 25 (1973), 973–978.
  • [15] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100(1) (1986), 161–166.
  • [16] I.J. Maddox, Inclusions between FK spaces and Kuttner’s theorem, Math. Proc. Cambridge Philos. Soc., 101(3) (1987), 523–527.
  • [17] A. Aizpuru, M.C. Listan-Garcia, F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math., 37(4) (2014), 525–530.
  • [18] A. Aizpuru, M.C. Listan-Garcia, F. Rambla-Barreno, Double density by moduli and statistical convergence, Bull. Belg. Math. Soc. Simon Stevin, 19(4) (2012), 663–673.
  • [19] V.K. Bhardwaj, S. Dhawan, f-statistical convergence of order a and strong Ces`aro summability of order a with respect to a modulus, J. Ineq. Appl., 2015(332) (2015).
  • [20] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18(1-2) (1990), 18–56.
  • [21] M. Bohner, A. Peterson, Dynamic Equations On Time Scales: An Introduction With Applications, Birkh¨auser, Boston, 2001.
  • [22] R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl., 4(4) (2001), 535–557.
  • [23] G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285(1) (2003), 107–127.
  • [24] M. Bohner, G.S. Guseinov, Partial differentiation on time scales, Dynam. Syst. Appl., 13 (2004) , 351–379.
  • [25] M. Bohner, G. S. Guseinov, Multiple Lebesgue integration on time scales, Adv. Difference Equ., 2006 (2006), Article ID 26391.
  • [26] A. Cabada, D.R. Vivero, Expression of the Lebesgue D􀀀integral on time scales as a usual Lebesgue integral: Application to the calculus of D􀀀antiderivatives, Math. Comput. Model., 43(1-2) (2006), 194–207.
  • [27] M.S. Seyyidoğlu, N.O. Tan, A note on statistical convergence on time scale, J. Inequal. Appl., 2012(219) (2012).
  • [28] C. Turan, O. Duman, Statistical convergence on time scales and its characterizations, Springer Proc. Math. Stat., 41 (2013), 57–71.
  • [29] C. Turan, O. Duman, Convergence methods on time scales, AIP Conf. Proc., 1558 (2013), 1120–1123.
  • [30] C. Turan, O. Duman, Fundamental properties of statistical convergence and lacunary statistical convergence on time scales, Filomat, 31(14) (2017), 4455–4467.
  • [31] Y. Altın, H. Koyunbakan, E. Yılmaz, Uniform statistical convergence on time scales, J. Appl. Math., 2014 (2014).
  • [32] M. Çınar, E. Yılmaz, Y. Altın, T. Gülsen, Statistical convergence of double sequences on product time scales, Analysis, 39(3) (2019), 71–77.
  • [33] B. Sözbir, S. Altundağ, Weighted statistical convergence on time scale, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 26 (2019), 137–143.
  • [34] B. Sözbir and S. Altundağ, ab-statistical convergence on time scales, Facta Univ. Ser. Math. Inform., 35(1) (2020), 141–150.
  • [35] B. Sözbir, S. Altundağ, M. Başarır, On the (Delta,f)-lacunary statistical convergence of the functions, Maltepe J. Math., 2(1) (2020), 1–8.
  • [36] N. Turan, M. Başarır, On the ${\Delta _g}$-statistical convergence of the function defined time scale, AIP Conf. Proc., 2183, 040017 (2019), https://doi.org/10.1063/1.5136137.
  • [37] N. Tok, M. Başarır, On the $\lambda _h^\alpha$-statistical convergence of the functions defined on the time scale, Proc. Int. Math. Sci., 1(1) (2019), 1–10.
  • [38] M. Başarır, A note on the $\left( {\theta ,\varphi } \right)$-statistical convergence of the product time scale, Konuralp J. Math., 8(1) (2020), 192–196.
  • [39] M. Başarır, A note on the $\left( {\lambda ;v} \right)_h^\alpha $-statistical convergence of the functions defined on the product of time scales, Azerbaijan Journal of Mathematics, 2020, under communication.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Bayram Sözbir 0000-0002-9475-7180

Selma Altundağ 0000-0002-5893-9868

Metin Basarır 0000-0002-4341-4399

Yayımlanma Tarihi 23 Aralık 2020
Gönderilme Tarihi 28 Mayıs 2020
Kabul Tarihi 22 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 4

Kaynak Göster

APA Sözbir, B., Altundağ, S., & Basarır, M. (2020). On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale. Universal Journal of Mathematics and Applications, 3(4), 138-143. https://doi.org/10.32323/ujma.743949
AMA Sözbir B, Altundağ S, Basarır M. On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale. Univ. J. Math. Appl. Aralık 2020;3(4):138-143. doi:10.32323/ujma.743949
Chicago Sözbir, Bayram, Selma Altundağ, ve Metin Basarır. “On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale”. Universal Journal of Mathematics and Applications 3, sy. 4 (Aralık 2020): 138-43. https://doi.org/10.32323/ujma.743949.
EndNote Sözbir B, Altundağ S, Basarır M (01 Aralık 2020) On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale. Universal Journal of Mathematics and Applications 3 4 138–143.
IEEE B. Sözbir, S. Altundağ, ve M. Basarır, “On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale”, Univ. J. Math. Appl., c. 3, sy. 4, ss. 138–143, 2020, doi: 10.32323/ujma.743949.
ISNAD Sözbir, Bayram vd. “On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale”. Universal Journal of Mathematics and Applications 3/4 (Aralık 2020), 138-143. https://doi.org/10.32323/ujma.743949.
JAMA Sözbir B, Altundağ S, Basarır M. On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale. Univ. J. Math. Appl. 2020;3:138–143.
MLA Sözbir, Bayram vd. “On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale”. Universal Journal of Mathematics and Applications, c. 3, sy. 4, 2020, ss. 138-43, doi:10.32323/ujma.743949.
Vancouver Sözbir B, Altundağ S, Basarır M. On the $\Delta _{{\Lambda ^2}}^f$-Statistical Convergence on Product Time Scale. Univ. J. Math. Appl. 2020;3(4):138-43.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.