Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 4, 144 - 155, 23.12.2020
https://doi.org/10.32323/ujma.745248

Abstract

References

  • [1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKRs Scientific Session, Sofia, 1983.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96, doi:10.1016/S0165-0114(86)80034-3
  • [3] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Verlag, Heidelberg, New York, 1999, doi:10.1007/978-3-7908-1870-3-1
  • [4] P. Burillo and H. Bustince, Intuitionistic fuzzy relations (Part I) , Mathware and computing 2, (1995), 5–38.
  • [5] P. Burillo and H. Bustince, Intuitionistic fuzzy relations (Part II) , Mathware and computing 2, (1995), 117–148.
  • [6] H. Bustince and P. Burillo, Antisymmetrical intuitionistic fuzzy relation. Order on the referential set induced by an bi fuzzy relation , Fuzzy Sets and Systems, Fuzzy Sets and Systems, 2 (1995), 17–22.
  • [7] H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations , Fuzzy Sets and Systems, 3 (1996), 293–303, doi:10.1016/0165-0114(96)84610-0
  • [8] P. Burillo, Construction of intuitionistic fuzzy relations with predetermined properties, Fuzzy Sets and Systems, Fuzzy Sets and Systems 3 (2000), 379–403, doi:10.1016/S0165-0114(97)00381-3
  • [9] H. Gurc¸ay, D. C¸ oker and A.H. Es¸, On fuzzy continuity in intuitionistic fuzzy topological spaces, Journal of Fuzzy Mathematics, 2 (2003), 365–378.
  • [10] I. Farhan and O.M. Mourad, A new structure and constructions of L-fuzzy maps, International Journal of Computational and Applied Mathematics 1 (2013), 1–10.
  • [11] O. Galor, Discrete dynamical systems, Springer, 2007, doi:10.1007/3-540-36776-4
  • [12] G. Gomathi and D. Jayanthi, Intuitionistic fuzzy b] continuous mapping, Advances in Fuzzy Mathematics 1 (2018), 39–47.
  • [13] S. Heilpern, Fuzzy mappings and fixed point theorem, Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, 83 (1981), 566–569, doi:10.1016/0022-247X(81)90141-4
  • [14] G.E. Hughes and M.J. Cresswell, A New Introduction to Modal Logic, London: Routledge, (2012), doi:10.4324/9780203028100
  • [15] K. Hur, S.Y. Jang and H.M. Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, 1 (2003), 72–77, doi:10.5391/IJFIS.2003.3.1.072
  • [16] D. Jayanthi, Intuitionistic Fuzzy Generalized Beta Continuous, Indian Journal of Applied Research, Mappings, 4 (2014), 1–6.
  • [17] A. Kandil, S. Saleh and M.M. Yakout, Fuzzy topology on fuzzy sets: regularity and separation axioms, American Academic and Scholarly Research Journal, 2 (2012).
  • [18] H.W. Kang, J-G. Lee and K. Hur, Intuitionistic fuzzy mappings and intuitionistic fuzzy equivalence relations, Annals of Fuzzy Mathematics and Informatics, 1 (2012), 61–87.
  • [19] K. Lim, G.H. Choi and H. Hur, Fuzzy mappings and fuzzy equivalence relations, International Journal of Fuzzy Logic and Intelligent Systems, 3 (2011), 750–749, doi:10.5391/IJFIS.2011.11.3.153
  • [20] A. Manimaran, K. A. Prakash, P. Thangaraj, Intuitionistic fuzzy totally continuous and totally semi-continuous mappings in intuitionistic fuzzy topological spaces, International journal of Advanced Scientific and Technical Research, 2 (2011), 505–509.
  • [21] S.K. Sardar, M. Mandal and S.K. Majumder, Intuitionistic fuzzy ideal extensions in semigroups , J. Pure Appl. Math, 1 (2015), 59–67.

Construction of Intuitionistic Fuzzy Mappings with Applications

Year 2020, Volume: 3 Issue: 4, 144 - 155, 23.12.2020
https://doi.org/10.32323/ujma.745248

Abstract

In a recent paper, Ismail and Massa'deh have introduced the notion of L-fuzzy mapping and some basic operations were proved. In this paper, we generalize this notion to the setting of intuitionistic fuzzy sets. Moreover, we study the main properties related to intuitionistic fuzzy mapping. As applications, we provide properties of intuitionistic fuzzy continuous mappings in intuitionistic fuzzy topological spaces and investigate the relation among various kinds of intuitionistic fuzzy continuity.

References

  • [1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKRs Scientific Session, Sofia, 1983.
  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96, doi:10.1016/S0165-0114(86)80034-3
  • [3] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Springer-Verlag, Heidelberg, New York, 1999, doi:10.1007/978-3-7908-1870-3-1
  • [4] P. Burillo and H. Bustince, Intuitionistic fuzzy relations (Part I) , Mathware and computing 2, (1995), 5–38.
  • [5] P. Burillo and H. Bustince, Intuitionistic fuzzy relations (Part II) , Mathware and computing 2, (1995), 117–148.
  • [6] H. Bustince and P. Burillo, Antisymmetrical intuitionistic fuzzy relation. Order on the referential set induced by an bi fuzzy relation , Fuzzy Sets and Systems, Fuzzy Sets and Systems, 2 (1995), 17–22.
  • [7] H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations , Fuzzy Sets and Systems, 3 (1996), 293–303, doi:10.1016/0165-0114(96)84610-0
  • [8] P. Burillo, Construction of intuitionistic fuzzy relations with predetermined properties, Fuzzy Sets and Systems, Fuzzy Sets and Systems 3 (2000), 379–403, doi:10.1016/S0165-0114(97)00381-3
  • [9] H. Gurc¸ay, D. C¸ oker and A.H. Es¸, On fuzzy continuity in intuitionistic fuzzy topological spaces, Journal of Fuzzy Mathematics, 2 (2003), 365–378.
  • [10] I. Farhan and O.M. Mourad, A new structure and constructions of L-fuzzy maps, International Journal of Computational and Applied Mathematics 1 (2013), 1–10.
  • [11] O. Galor, Discrete dynamical systems, Springer, 2007, doi:10.1007/3-540-36776-4
  • [12] G. Gomathi and D. Jayanthi, Intuitionistic fuzzy b] continuous mapping, Advances in Fuzzy Mathematics 1 (2018), 39–47.
  • [13] S. Heilpern, Fuzzy mappings and fixed point theorem, Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, 83 (1981), 566–569, doi:10.1016/0022-247X(81)90141-4
  • [14] G.E. Hughes and M.J. Cresswell, A New Introduction to Modal Logic, London: Routledge, (2012), doi:10.4324/9780203028100
  • [15] K. Hur, S.Y. Jang and H.M. Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems, 1 (2003), 72–77, doi:10.5391/IJFIS.2003.3.1.072
  • [16] D. Jayanthi, Intuitionistic Fuzzy Generalized Beta Continuous, Indian Journal of Applied Research, Mappings, 4 (2014), 1–6.
  • [17] A. Kandil, S. Saleh and M.M. Yakout, Fuzzy topology on fuzzy sets: regularity and separation axioms, American Academic and Scholarly Research Journal, 2 (2012).
  • [18] H.W. Kang, J-G. Lee and K. Hur, Intuitionistic fuzzy mappings and intuitionistic fuzzy equivalence relations, Annals of Fuzzy Mathematics and Informatics, 1 (2012), 61–87.
  • [19] K. Lim, G.H. Choi and H. Hur, Fuzzy mappings and fuzzy equivalence relations, International Journal of Fuzzy Logic and Intelligent Systems, 3 (2011), 750–749, doi:10.5391/IJFIS.2011.11.3.153
  • [20] A. Manimaran, K. A. Prakash, P. Thangaraj, Intuitionistic fuzzy totally continuous and totally semi-continuous mappings in intuitionistic fuzzy topological spaces, International journal of Advanced Scientific and Technical Research, 2 (2011), 505–509.
  • [21] S.K. Sardar, M. Mandal and S.K. Majumder, Intuitionistic fuzzy ideal extensions in semigroups , J. Pure Appl. Math, 1 (2015), 59–67.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Soheyb Milles

Ergün Nart 0000-0001-5049-609X

Farhan Ismail This is me 0000-0002-0822-8961

Abdelkrim Latreche This is me 0000-0003-1424-7197

Publication Date December 23, 2020
Submission Date May 29, 2020
Acceptance Date September 29, 2020
Published in Issue Year 2020 Volume: 3 Issue: 4

Cite

APA Milles, S., Nart, E., Ismail, F., Latreche, A. (2020). Construction of Intuitionistic Fuzzy Mappings with Applications. Universal Journal of Mathematics and Applications, 3(4), 144-155. https://doi.org/10.32323/ujma.745248
AMA Milles S, Nart E, Ismail F, Latreche A. Construction of Intuitionistic Fuzzy Mappings with Applications. Univ. J. Math. Appl. December 2020;3(4):144-155. doi:10.32323/ujma.745248
Chicago Milles, Soheyb, Ergün Nart, Farhan Ismail, and Abdelkrim Latreche. “Construction of Intuitionistic Fuzzy Mappings With Applications”. Universal Journal of Mathematics and Applications 3, no. 4 (December 2020): 144-55. https://doi.org/10.32323/ujma.745248.
EndNote Milles S, Nart E, Ismail F, Latreche A (December 1, 2020) Construction of Intuitionistic Fuzzy Mappings with Applications. Universal Journal of Mathematics and Applications 3 4 144–155.
IEEE S. Milles, E. Nart, F. Ismail, and A. Latreche, “Construction of Intuitionistic Fuzzy Mappings with Applications”, Univ. J. Math. Appl., vol. 3, no. 4, pp. 144–155, 2020, doi: 10.32323/ujma.745248.
ISNAD Milles, Soheyb et al. “Construction of Intuitionistic Fuzzy Mappings With Applications”. Universal Journal of Mathematics and Applications 3/4 (December 2020), 144-155. https://doi.org/10.32323/ujma.745248.
JAMA Milles S, Nart E, Ismail F, Latreche A. Construction of Intuitionistic Fuzzy Mappings with Applications. Univ. J. Math. Appl. 2020;3:144–155.
MLA Milles, Soheyb et al. “Construction of Intuitionistic Fuzzy Mappings With Applications”. Universal Journal of Mathematics and Applications, vol. 3, no. 4, 2020, pp. 144-55, doi:10.32323/ujma.745248.
Vancouver Milles S, Nart E, Ismail F, Latreche A. Construction of Intuitionistic Fuzzy Mappings with Applications. Univ. J. Math. Appl. 2020;3(4):144-55.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.