Research Article
BibTex RIS Cite

Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale

Year 2024, Volume: 7 Issue: 4, 170 - 179
https://doi.org/10.32323/ujma.1542567

Abstract

This study investigates the potential broad application of Subsurface Vertical Flow Constructed Wetlands (SSVF CWs) for heavy metal remediation, focusing on Chromium (Cr) and Arsenic (As) removal efficiency. A pilot-scale experimental setup was employed, utilizing a SSVF CW filled with 12 mm gravel and 2 mm coarse sand, planted with Phragmites Australis. The research, conducted over 366 days, aimed to develop a numerical approximation tool to predict the performance and applicability of SSVF CWs in various environmental conditions. The experimental system operated at a hydraulic loading rate of $98-111 \mathrm{~mm} / \mathrm{d}$ and a hydraulic retention time of 6 days. Results showed average removal efficiencies of $44.87 \pm 9.52 \%$ for Cr and $43.16 \pm 9.43 \%$ for As. A mass balance analysis revealed that substrate accumulation was the primary mechanism for heavy metal removal, accounting for $29 \%$ of Cr and $26 \%$ of As removal. Plant uptake contributed to $3.5-9.9 \%$ of Cr and $0.3-$ $8.8 \%$ of As removal. Based on these findings, a numerical model was developed to simulate SSVF CW performance under varying environmental and operational parameters. The model incorporated factors such as influent concentrations, hydraulic loading rates, substrate composition, and plant species. Validation against experimental data showed good agreement, with an $\mathrm{R}^{2}$ value of 0.89 . The numerical tool was then used to predict SSVF CW performance across a range of scenarios, indicating potential broad applications in industrial wastewater treatment, mine drainage remediation, and contaminated groundwater cleanup. This study provides valuable insights into the scalability and versatility of SSVF CWs for heavy metal removal, offering a sustainable and cost-effective solution for water treatment challenges.

Ethical Statement

The authors declare that this study was conducted in accordance with established ethical standards. We affirm that all methods and procedures used in this research were approved by the institution and conform to the ethical standards.

Supporting Institution

Aligarh Muslim University

References

  • [1] C. Chen, Recent advances of vertical-flow constructed wetlands for heavy metal pollution treatment, In Proceedings of the 2nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022), 12326 (2022), 233-237). https://doi.org/10.1117/12.2646216
  • [2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, 2nd ed., (2008), CRC Press, Boca Raton. https://doi.org/10.1201/9781420012514
  • [3] A.I. Machado, M. Beretta, R. Fragoso, E.D.C.N.F.D.A. Duarte, Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil, J. Environ. Manag., 187 (2017), 560-570.
  • [4] C.X. Chen, F.J. Yang, Y.Y. Deng, A. Dan, Optimization of constructed wetlands on purifying black-odorous water and their potential purification mechanism, Water Sci. Technol., 86(9) (2022), 2175-2183. https://doi.org/10.2166/wst.2022.351
  • [5] T. Carballeira, I. Ruiz, M. Soto, Improving the performance of vertical flow constructed wetlands by modifying the filtering media structure, Environ. Sci. Pollut. R., 28(40) (2021), 56852-56864. https://doi.org/10.1007/s11356-021-14389-1
  • [6] Z. Zhou, Q. Alhadidi, K. Quinones Deliz, H. Yamaguchi Greenslet, J.C. Bonzongo, Removal of oxyanion forming elements from contaminated soils through combined sorption onto zero-valent iron (zvi) and magnetic separation: Arsenic and chromium as case studies, Soil Sediment Contam.: An International Journal, 29(2) (2020), 180-191. https://doi.org/10.1080/15320383.2019.1696279
  • [7] T. Engida, T. Alemu, J. Wu, D. Xu, Q. Zhou, Z. Wu, Microbial community dynamics and activity in constructed wetland treating agro-industrial and domestic wastewater: A review, Appl. Ecol. Environ. Res., 19(4) (2021), 2667-2687. https://doi.org/10.15666/aeer/1904 26672687
  • [8] H. Lin, S. You, L. Liu, Characterization of microbial communities, identification of Cr (VI) reducing bacteria in constructed wetland and Cr (VI) removal ability of Bacillus Cereus, Sci. Rep-UK 2019, 9(1) (2019), 12873. https://doi.org/10.1038/s41598-019-49333-4
  • [9] L. Marchand, M. Mench, D.L. Jacob, M.L. Otte, Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review, Environ. Pollut., 158(12) (2010), 3447-3461.
  • [10] X. Zhang, S. Zhao, J. Gao, Y. Lei, Y. Yuan, Y. Jiang, Z. Xu, C. He, Microbial action and mechanisms for Cr (VI) removal performance by layered double hydroxide modified zeolite and quartz sand in constructed wetlands, J. Environ. Manage., 246 (2019), 636-646.
  • [11] O. Shelef, A. Gross, S. Rachmilevitch, Role of plants in a constructed wetland: Current and new perspectives, Water, 5(2) (2013), 405-419. https://doi.org/10.3390/w5020405
  • [12] B. Zhang, Z. Wang, J. Shi, H. Dong, Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater, Geochim. Cosmochim. Ac., 268 (2020), 296-309. https://doi.org/10.1016/j.gca.2019.10.011
  • [13] M. Gheju, I. Balcu, Removal of chromium from Cr (VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations, J. Hazard Mater, 196 (2011), 131-138. https://doi.org/10.1016/j.jhazmat.2011.09.002
  • [14] M.A. Maine, N. Sune, H. Hadad, G. Sanchez, C. Bonetto, Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance, Chemosphere, 68(6) (2007), 11051113. https://doi.org/10.1016/j.chemosphere.2007.01.064
  • [15] J. Vymazal, T. Brezinova, M. Kozeluh, Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic, Sci. Total Environ., 536 (2015), 625-631. https://doi.org/10.1016/j.scitotenv.2015.07.077
  • [16] P.S. Ghosal, K.V. Kattil, M.K. Yadav, A.K. Gupta, Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network, J. Environ. Manage., 209 (2018), 176-187. https://doi.org/10.1016/j.jenvman.2017.12.040
  • [17] D. You, H. Shi, L. Yang, P. Shao, X. Luo, K. Yin, S. Luo, Tuning the effective utilization of adsorption sites in La-MOFs via a steric hindrance effect towards enhanced As (III) removal, Environ. Sci. Nano, 8(11) (2021), 3387-3394. https://doi.org/10.1039/d1en00608h
  • [18] M.A. Maine, N. Sune, H. Hadad, G. Sanchez, C. Bonetto, Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry, Ecol. Eng., 26(4) (2006), 341-347. https://doi.org/10.1016/j.ecoleng.2005.12.004
  • [19] P.A. Mays, G.S. Edwards, Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage, Ecol. Eng., 16(4) (2001), 487-500. https://doi.org/10.1016/S0925-8574(00)00112-9
  • [20] H.R. Hadad, M.A. Maine, C.A. Bonetto, Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment, Chemosphere, 63(10) (2006), 1744-1753. https://doi.org/10.1016/j.chemosphere.2005.09.014
  • [21] E. Lesage, D.P. Rousseau, E. Meers, F.M. Tack, N. De Pauw, Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium, Sci. Total Environ., 380(1-3) (2007), 102-115. https://doi.org/10.1016/j.scitotenv.2006.10.055
  • [22] C. Avila, J.M. Bayona, I. Martin, J.J. Salas, J. Garcia, Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse, Ecol. Eng., 80 (2015), 108-116. https://doi.org/10.1016/j.ecoleng.2014.07.056
  • [23] Z. Huang, X. Zhang, L. Cui, G. Yu, Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment, J. Environ. Manage., 180 (2016), 384-389. https://doi.org/10.1016/j.jenvman.2016.05.060
  • [24] H.I. Mustapha, J.J.A. Van Bruggen, P.N.L. Lens, Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria, Int. J. Phytoremediat., 20(1) (2018), 44-53. https://doi.org/10.1080/15226514.2017.1337062
  • [25] M. Huber, A. Welker, M. Dierschke, J.E. Drewes, B. Helmreich, A novel test method to determine the filter material service life of decentralized systems treating runoff from traffic areas, J. Environ. Manage., 179 (2016), 66-75. https://doi.org/10.1016/j.jenvman.2016.05.003
  • [26] C.C. Muoghalu, P.A. Owusu, S. Lebu, A. Nakagiri, S. Semiyaga, O.T. Iorhemen, M. Manga, Biochar as a novel technology for treatment of onsite domestic wastewater: A critical review, Front. Environ. Sci., 11 (2023), 1095920. https://doi.org/10.3389/fenvs.2023.1095920
  • [27] S. Yan, Q. Ling, Z. Bao, Z. Chen, S. Yan, Z. Dong, B. Zhang, B. Deng, Cadmium accumulation in Pak Choi (Brassica Chinensis L.) and estimated dietary intake in the suburb of Hangzhou city, China, Food Addit. Contam. Part B, 2(1) (2009), 74-78. https://doi.org/10.1080/02652030902991649
  • [28] K. Samal, R.R. Dash, P. Bhunia, Treatment of wastewater by vermifiltration integrated with macrophyte filter: A review, J. Environ. Chem. Eng., 5(3) (2017), 2274-2289. https://doi.org/10.1016/j.jece.2017.04.026
  • [29] G. Yu, G. Wang, T. Chi, C. Du, J. Wang, P. Li, Y. Zhang, S. Wang, K. Yang, Y. Long, H. Chen, Enhanced removal of heavy metals and metalloids by constructed wetlands: A review of approaches and mechanisms, Sci. Total Environ., 821 (2022), 153516. https://doi.org/10.1016/j.scitotenv.2022.153516
  • [30] A.I. Stefanakis, Constructed wetlands: description and benefits of an eco-tech water treatment system, In: E. McKeown, G. Bugyi (Eds.), Impact of Water Pollution on Human Health and Environmental Sustainability, 1st ed., IGI Global, (2016), 281-303. http://dx.doi.org/10.4018/978-1-4666-9559-7.ch012
  • [31] A.I. Stefanakis, Introduction to constructed wetland technology, In: A.I. Stefanakis (Eds.), Constructed Wetlands For Industrial Wastewater Treatment, 1st ed., John Wiley & Sons, Ltd: Chichester, UK, (2018), 1-21. https://doi.org/10.1002/9781119268376.ch0
  • [32] A. Operacz, K. Jozwiakowski, J. Rodziewicz, W. Janczukowicz, P. Bugajski, Impact of climate conditions on pollutant concentrations in the effluent from a one-stage constructed wetland: A case study, Sustainability, 15(17) (2023), 13173. https://doi.org/10.3390/su151713173
  • [33] C.A. Madera-Parra, M.R. Pena, E.J. Pena, P.N.L. Lens, Cr (VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale, Environ. Sci. Pollut. R., 22 (2015), 12804-12815. https://doi.org/10.1007/s11356-014-3623-z
  • [34] M.Y. Sultana, A.K.M.M.B. Chowdhury, M.K. Michailides, C.S. Akratos, A.G. Tekerlekopoulou, D.V. Vayenas, Integrated Cr (VI) removal using constructed wetlands and composting, J. Hazard Mater, 281 (2015), 106-113. https://doi.org/10.1016/j.jhazmat.2014.06.046
  • [35] M.N. Iqbal, A. Ashraf, Environmental pollution: Heavy metals removal from water sources, Int. J. Altern. Fuels Energy, 2(1) (2018), 14-15. https://psmjournals.org/index.php/ijafe/article/view/186
  • [36] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, In: A. Luch (Eds.), Molecular, Clinical and Environmental Toxicology, Springer Basel AG: Basel, Switzerland, Volume 101: Experientia Supplementum, (2012), 133-164. https://doi.org/10.1007/978-3-7643-8340-4 6
  • [37] Y. Yang, Y. Zhao, R. Liu, D. Morgan, Global development of various emerged substrates utilized in constructed wetlands, Bioresour. Technol., 261 (2018), 441-452. https://doi.org/10.1016/j.biortech.2018.03.085
  • [38] H. Zhong, N. Hu, Q. Wang, Y. Chen, L. Huang, How to select substrate for alleviating clogging in the subsurface flow constructed wetland?, Sci. Total Environ., 828 (2022), 154529. https://doi.org/10.1016/j.scitotenv.2022.154529
  • [39] M.A. Maine, H.R. Hadad, G.A. Di Luca, M. de las Mercedes Mufarrege, G.C. Sanchez, Macrophyte role and metal removal in constructed wetlands for the treatment of effluents from metallurgical industries, In: E.R. Donati(Eds.), Heavy Metals In The Environment: Microorganisms and Bioremediation, CRC Press, Boca Raton, USA, (2018), 302-321. https://www.routledge.com/Heavy-Metals-in-the-EnvironmentMicroorganisms-and- Bioremediation/Donati/p/book/9781138035805
  • [40] K. Ahmad, H. R. Shah, M. Ahmad, M. Ahmed, K. Naseem, N. Riaz, A. Muhammad, A. Ayub, M. Ahmad, Z. Ahmad, A. Munwar, A. Rauf, R. Hussain, M. Ashfaq, Comparative study between two zeolitic imidazolate frameworks as adsorbents for removal of organoarsenic, As (III) and As (V) species from water, Braz. J. Anal. Chem., 9(36) (2022), 78-97. http://dx.doi.org/10.30744/brjac.2179-3425.AR-112-2021
  • [41] J. Herrera-Quintero, G. Maya-Toro, K. Colmenares-Vargas, J. Vidal-Prada, D. Barbosa-Trillos, E. Munoz-Mazo, Influence of physicochemical variables on polymer adsorption in porous media, Dyna, 89(220) (2022), 9-18. https://doi.org/10.15446/dyna.v89n220.97440
  • [42] S. Zhu, Z. Ye, Z. Liu, Z. Chen, J. Li, Z. Xiang, Adsorption characteristics of polymer solutions on media surfaces and their main influencing factors, Polymers, 13(11) (2021), 1774. https://doi.org/10.3390/polym13111774
  • [43] S. Kumar, B. Pratap, D. Dubey, V. Dutta, Removal of nutrients from domestic wastewater using constructed wetlands: Assessment of suitable environmental and operational conditions, Environ. Sustain., 3(4) (2020), 341-352. https://doi.org/10.1007/s42398-020-00124-y
  • [44] T. Zheng, X. Lin, J. Xu, J. Ren, D. Sun, Y. Gu, J. Huang, Enhanced nitrogen removal of steel rolling wastewater by constructed wetland combined with sulfur autotrophic Denitrification, Sustainability, 13(3) (2021), 1559 https://doi.org/10.3390/SU13031559
  • [45] K. Lizama-Allende, I. Jaque, J. Ayala, G. Montes-Atenas, E. Leiva, Arsenic removal using horizontal subsurface flow constructed wetlands: A sustainable alternative for arsenic-rich acidic waters, Water, 10(10) (2018), 1447. https://doi.org/10.3390/w10101447
  • [46] V.A. Papaevangelou, G.D. Gikas, V.A. Tsihrintzis, Chromium removal from wastewater using hsf and vf pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment, Chemosphere, 168 (2017), 716-730. https://doi.org/10.1016/j.chemosphere.2016.11.002
  • [47] K. Lizama-Allende, T.D. Fletcher, G. Sun, The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors, Chem. Eng. J., 179 (2012), 119-130. https://doi.org/10.1016/J.CEJ.2011.10.069
  • [48] H.T. Nguyen, B.Q. Nguyen, T.T. Duong, A.T. Bui, H.T., Nguyen, H.T. Cao, N.T. Mai, K.M. Nguyen, T.T. Pham, K.W. Kim, Pilot-scale removal of arsenic and heavy metals from mining wastewater using adsorption combined with constructed wetland, Minerals, 9(6) (2019), 379. https://doi.org/10.3390/MIN9060379
  • [49] C.A. Odinga, F.M. Swalaha, F.A.O. Otieno, K.R. Ranjith, F. Bux, Investigating the efficiency of constructed wetlands in the removal of heavy metals and enteric pathogens from wastewater, Environ. Technol. Rev., 2(1) (2013), 1-16. https://doi.org/10.1080/21622515.2013.865086
  • [50] U. Kadak, Fractional-type integral operators and their applications to trend estimation of COVID-19, Math. Methods Appl. Sci., 47(5) (2024), 3786-3808. https://doi.org/10.1002/mma.9304
  • [51] V.A. Khan, M. Arshad, M.D. Khan, Some results of neutrosophic normed space via tribonacci convergent sequence spaces, J. Inequal Appl., 2022(1) (2022), 42. https://doi.org/10.1186/s13660-022-02775-3
  • [52] N. Raza, M. Kumar, M., Mursaleen, On approximation operators involving tricomi function, Bull. Malays. Math. Sci. Soc., 47(5), (2024), 154. https://doi.org/10.1007/s40840-024-01750-z
  • [53] N. Raza, M. Kumar, M. Mursaleen, Approximation with sz´asz-chlodowsky operators employing general-appell polynomials, J. Inequal Appl., 2024(1) (2024), 26. https://doi.org/10.1186/s13660-024-03105-5
  • [54] N. Rao, A.K. Yadav, M. Mursaleen, B.K. Sinha, N.K. Jha, Szasz-beta operators via Hermite polynomial, J. King Saud Univ. Sci., 36(4) (2024), 103120. https://doi.org/10.1016/j.jksus.2024.103120
  • [55] N.L. Braha, T. Mansour, & M. Mursaleen, Some approximation properties of parametric Baskakov–Schurer–Szasz operators through a power series summability method, Complex Anal. Oper. Theory, 18(3) (2024), 71. https://doi.org/10.1007/s11785-024-01510-8
  • [56] N.L. Braha, T. Mansour, M. Mursaleen, Approximation properties by b´ezier variant of the baskakov-schurer-sz´asz-stancu operators, Math. Methods Appl. Sci., 47(4) (2024), 2419-2433. https://doi.org/10.1002/mma.9755
  • [57] L. Cheregi, M. Mursaleen, Approximation of complex q-beta-baskakov-sz´asz-stancu operators in compact disk, Demonstr. Math., 57(1) (2024), 20230158. https://doi.org/10.1515/dema-2023-0158
  • [58] C. DeVore, L. Rodriguez-Freire, N. Villa, M. Soleimanifar, J. Gonzalez-Estrella, A. Ali, J. Lezama-Pacheco, C. Ducheneaux, J. Cerrato, Mobilization of As, Fe, and Mn from contaminated sediment in aerobic and anaerobic conditions: Chemical or microbiological triggers, ACS Earth Space Chem., 6(4) (2022), 16441654. https://doi.org/10.1021/acsearthspacechem.1c00370
  • [59] L. Hu, D. Zhang, Y. Qian, Z. Nie, Y. Long, D. Shen, C. Fang, J. Yao, Microbes drive changes in Arsenic species distribution during the landfill process, Environ. Pollut., 292 Part A (2021), 118322. https://doi.org/10.1016/j.envpol.2021.118322
  • [60] Y. Kang, H. Sun, B. Gao, J. Dang, M. Zhang, M. Li, J. Dong, H. Wu, J. Zhang, Z. Guo, Enhanced reduction of Cr (VI) in ironcarbon micro-electrolysis constructed wetlands: Mechanisms of iron cycle and microbial interactions, Chem. Eng. J., 439 (2022), 135742. https://doi.org/10.1016/j.cej.2022.135742
  • [61] R.T. Kapoor, M.F.B. Mfarrej, P. Alam, J. Rinklebe, P. Ahmad, Accumulation of chromium in plants and its repercussion in animals and humans, Environ. Pollut., 301 (2022), 119044. https://doi.org/10.1016/j.envpol.2022.119044
  • [62] S. Krishnasamy, R. Lakshmanan, M. Ravichandran, Phytoremediatiation of metal and metalloid pollutants from farmland: An in-situ soil conservation, In: K.F. Mendes, R. Nogueira de Sousa, K.C. Mielke ( Eds.), Biodegradation Technology of Organic and Inorganic Pollutants, IntechOpen, (2021), 303-320.
  • [63] A. Kunhikrishnan, G. Choppala, B. Seshadri, H. Wijesekara, N.S. Bolan, K. Mbene, W.I. Kim, Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As (V) and Cr (VI) in contaminated soils, J. Environ. Manage., 186 (2017), 183-191.
  • [64] L. Li, K. Zhang, R.A. Gill, F. Islam, M.A. Farooq, J.Wang, W. Zhou, Ecotoxicological and interactive effects of copper and chromium on physiochemical, ultrastructural, and molecular profiling in Brassica Napus L., BioMed Res. Int., 1 (2018), 1-17. https://doi.org/10.1155/2018/9248123
  • [65] K. Lizama-Allende, J. Ayala, I. Jaque, P. Echeverr˜AƒAˆ a, The removal of arsenic and metals from highly acidic water in horizontal subsurface flow constructed wetlands with alternative supporting media, J. Hazard. Mater., 408 (2021), 124832. https://doi.org/10.1016/j.jhazmat.2020.124832
  • [66] B. Majumder, S. Das, S. Mukhopadhyay, A.K. Biswas, Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza Sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability, Protoplasma, 256 (2019), 193211. https://doi.org/10.1007/s00709-018-1290-5
  • [67] D. Raj, S.K. Maiti, Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): An epitomised review, Environ. Monit. Assess., 192(2) (2020), 108. https://doi.org/10.1007/s10661-019-8060-5
  • [68] S. Sultana, M.H. Rashid, S.I. Huq, Arsenic accumulation in crops in relation to their water requirement, The Bangladesh J. Sci. Res., 28 (2016), 171-180. https://doi.org/10.3329/BJSR.V28I2.26789
  • [69] M. Wu, Q. Li, X. Tang, Z. Huang, L. Lin, M. Scholz, Arsenic (V) removal in wetland filters treating drinking water with different substrates and plants, Int. J. Environ. An. Ch., 94(6) (2014), 618-638. https://doi.org/10.1080/03067319.2013.864647
  • [70] Z. Yuan, W. Gustave, J. Boyle, R. Sekar, J. Bridge, Y. Ren, X. Tang, B. Guo, Z. Chen, Arsenic Behavior across soil-water interfaces in paddy soils: Coupling, decoupling and speciation, Chemosphere, 269 (2020), 128713. https://doi.org/10.1016/j.chemosphere.2020.128713
  • [71] Z. Zakaria, N.S. Zulkafflee, N.A. Mohd Redzuan, J. Selamat, M.R. Ismail, S.M. Praveena, G. Toth, A.F. Abdull Razis, Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks, Plants, 10(6) (2021), 1070. https://doi.org/10.3390/plants10061070
  • [72] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, M. Sadeghi, Toxic Mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Front. Pharmacol., 12 (2021), 643972. https://doi.org/10.3389/fphar.2021.643972

Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale

Year 2024, Volume: 7 Issue: 4, 170 - 179
https://doi.org/10.32323/ujma.1542567

Abstract

This study investigates the potential broad application of Subsurface Vertical Flow Constructed Wetlands (SSVF CWs) for heavy metal remediation, focusing on Chromium (Cr) and Arsenic (As) removal efficiency. A pilot-scale experimental setup was employed, utilizing a SSVF CW filled with 12 mm gravel and 2 mm coarse sand, planted with Phragmites Australis. The research, conducted over 366 days, aimed to develop a numerical approximation tool to predict the performance and applicability of SSVF CWs in various environmental conditions. The experimental system operated at a hydraulic loading rate of $98-111 \mathrm{~mm} / \mathrm{d}$ and a hydraulic retention time of 6 days. Results showed average removal efficiencies of $44.87 \pm 9.52 \%$ for Cr and $43.16 \pm 9.43 \%$ for As. A mass balance analysis revealed that substrate accumulation was the primary mechanism for heavy metal removal, accounting for $29 \%$ of Cr and $26 \%$ of As removal. Plant uptake contributed to $3.5-9.9 \%$ of Cr and $0.3-$ $8.8 \%$ of As removal. Based on these findings, a numerical model was developed to simulate SSVF CW performance under varying environmental and operational parameters. The model incorporated factors such as influent concentrations, hydraulic loading rates, substrate composition, and plant species. Validation against experimental data showed good agreement, with an $\mathrm{R}^{2}$ value of 0.89 . The numerical tool was then used to predict SSVF CW performance across a range of scenarios, indicating potential broad applications in industrial wastewater treatment, mine drainage remediation, and contaminated groundwater cleanup. This study provides valuable insights into the scalability and versatility of SSVF CWs for heavy metal removal, offering a sustainable and cost-effective solution for water treatment challenges.

References

  • [1] C. Chen, Recent advances of vertical-flow constructed wetlands for heavy metal pollution treatment, In Proceedings of the 2nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022), 12326 (2022), 233-237). https://doi.org/10.1117/12.2646216
  • [2] R.H. Kadlec, S.D. Wallace, Treatment Wetlands, 2nd ed., (2008), CRC Press, Boca Raton. https://doi.org/10.1201/9781420012514
  • [3] A.I. Machado, M. Beretta, R. Fragoso, E.D.C.N.F.D.A. Duarte, Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil, J. Environ. Manag., 187 (2017), 560-570.
  • [4] C.X. Chen, F.J. Yang, Y.Y. Deng, A. Dan, Optimization of constructed wetlands on purifying black-odorous water and their potential purification mechanism, Water Sci. Technol., 86(9) (2022), 2175-2183. https://doi.org/10.2166/wst.2022.351
  • [5] T. Carballeira, I. Ruiz, M. Soto, Improving the performance of vertical flow constructed wetlands by modifying the filtering media structure, Environ. Sci. Pollut. R., 28(40) (2021), 56852-56864. https://doi.org/10.1007/s11356-021-14389-1
  • [6] Z. Zhou, Q. Alhadidi, K. Quinones Deliz, H. Yamaguchi Greenslet, J.C. Bonzongo, Removal of oxyanion forming elements from contaminated soils through combined sorption onto zero-valent iron (zvi) and magnetic separation: Arsenic and chromium as case studies, Soil Sediment Contam.: An International Journal, 29(2) (2020), 180-191. https://doi.org/10.1080/15320383.2019.1696279
  • [7] T. Engida, T. Alemu, J. Wu, D. Xu, Q. Zhou, Z. Wu, Microbial community dynamics and activity in constructed wetland treating agro-industrial and domestic wastewater: A review, Appl. Ecol. Environ. Res., 19(4) (2021), 2667-2687. https://doi.org/10.15666/aeer/1904 26672687
  • [8] H. Lin, S. You, L. Liu, Characterization of microbial communities, identification of Cr (VI) reducing bacteria in constructed wetland and Cr (VI) removal ability of Bacillus Cereus, Sci. Rep-UK 2019, 9(1) (2019), 12873. https://doi.org/10.1038/s41598-019-49333-4
  • [9] L. Marchand, M. Mench, D.L. Jacob, M.L. Otte, Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review, Environ. Pollut., 158(12) (2010), 3447-3461.
  • [10] X. Zhang, S. Zhao, J. Gao, Y. Lei, Y. Yuan, Y. Jiang, Z. Xu, C. He, Microbial action and mechanisms for Cr (VI) removal performance by layered double hydroxide modified zeolite and quartz sand in constructed wetlands, J. Environ. Manage., 246 (2019), 636-646.
  • [11] O. Shelef, A. Gross, S. Rachmilevitch, Role of plants in a constructed wetland: Current and new perspectives, Water, 5(2) (2013), 405-419. https://doi.org/10.3390/w5020405
  • [12] B. Zhang, Z. Wang, J. Shi, H. Dong, Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater, Geochim. Cosmochim. Ac., 268 (2020), 296-309. https://doi.org/10.1016/j.gca.2019.10.011
  • [13] M. Gheju, I. Balcu, Removal of chromium from Cr (VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations, J. Hazard Mater, 196 (2011), 131-138. https://doi.org/10.1016/j.jhazmat.2011.09.002
  • [14] M.A. Maine, N. Sune, H. Hadad, G. Sanchez, C. Bonetto, Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance, Chemosphere, 68(6) (2007), 11051113. https://doi.org/10.1016/j.chemosphere.2007.01.064
  • [15] J. Vymazal, T. Brezinova, M. Kozeluh, Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic, Sci. Total Environ., 536 (2015), 625-631. https://doi.org/10.1016/j.scitotenv.2015.07.077
  • [16] P.S. Ghosal, K.V. Kattil, M.K. Yadav, A.K. Gupta, Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network, J. Environ. Manage., 209 (2018), 176-187. https://doi.org/10.1016/j.jenvman.2017.12.040
  • [17] D. You, H. Shi, L. Yang, P. Shao, X. Luo, K. Yin, S. Luo, Tuning the effective utilization of adsorption sites in La-MOFs via a steric hindrance effect towards enhanced As (III) removal, Environ. Sci. Nano, 8(11) (2021), 3387-3394. https://doi.org/10.1039/d1en00608h
  • [18] M.A. Maine, N. Sune, H. Hadad, G. Sanchez, C. Bonetto, Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry, Ecol. Eng., 26(4) (2006), 341-347. https://doi.org/10.1016/j.ecoleng.2005.12.004
  • [19] P.A. Mays, G.S. Edwards, Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage, Ecol. Eng., 16(4) (2001), 487-500. https://doi.org/10.1016/S0925-8574(00)00112-9
  • [20] H.R. Hadad, M.A. Maine, C.A. Bonetto, Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment, Chemosphere, 63(10) (2006), 1744-1753. https://doi.org/10.1016/j.chemosphere.2005.09.014
  • [21] E. Lesage, D.P. Rousseau, E. Meers, F.M. Tack, N. De Pauw, Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium, Sci. Total Environ., 380(1-3) (2007), 102-115. https://doi.org/10.1016/j.scitotenv.2006.10.055
  • [22] C. Avila, J.M. Bayona, I. Martin, J.J. Salas, J. Garcia, Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse, Ecol. Eng., 80 (2015), 108-116. https://doi.org/10.1016/j.ecoleng.2014.07.056
  • [23] Z. Huang, X. Zhang, L. Cui, G. Yu, Optimization of operating parameters of hybrid vertical down-flow constructed wetland systems for domestic sewerage treatment, J. Environ. Manage., 180 (2016), 384-389. https://doi.org/10.1016/j.jenvman.2016.05.060
  • [24] H.I. Mustapha, J.J.A. Van Bruggen, P.N.L. Lens, Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria, Int. J. Phytoremediat., 20(1) (2018), 44-53. https://doi.org/10.1080/15226514.2017.1337062
  • [25] M. Huber, A. Welker, M. Dierschke, J.E. Drewes, B. Helmreich, A novel test method to determine the filter material service life of decentralized systems treating runoff from traffic areas, J. Environ. Manage., 179 (2016), 66-75. https://doi.org/10.1016/j.jenvman.2016.05.003
  • [26] C.C. Muoghalu, P.A. Owusu, S. Lebu, A. Nakagiri, S. Semiyaga, O.T. Iorhemen, M. Manga, Biochar as a novel technology for treatment of onsite domestic wastewater: A critical review, Front. Environ. Sci., 11 (2023), 1095920. https://doi.org/10.3389/fenvs.2023.1095920
  • [27] S. Yan, Q. Ling, Z. Bao, Z. Chen, S. Yan, Z. Dong, B. Zhang, B. Deng, Cadmium accumulation in Pak Choi (Brassica Chinensis L.) and estimated dietary intake in the suburb of Hangzhou city, China, Food Addit. Contam. Part B, 2(1) (2009), 74-78. https://doi.org/10.1080/02652030902991649
  • [28] K. Samal, R.R. Dash, P. Bhunia, Treatment of wastewater by vermifiltration integrated with macrophyte filter: A review, J. Environ. Chem. Eng., 5(3) (2017), 2274-2289. https://doi.org/10.1016/j.jece.2017.04.026
  • [29] G. Yu, G. Wang, T. Chi, C. Du, J. Wang, P. Li, Y. Zhang, S. Wang, K. Yang, Y. Long, H. Chen, Enhanced removal of heavy metals and metalloids by constructed wetlands: A review of approaches and mechanisms, Sci. Total Environ., 821 (2022), 153516. https://doi.org/10.1016/j.scitotenv.2022.153516
  • [30] A.I. Stefanakis, Constructed wetlands: description and benefits of an eco-tech water treatment system, In: E. McKeown, G. Bugyi (Eds.), Impact of Water Pollution on Human Health and Environmental Sustainability, 1st ed., IGI Global, (2016), 281-303. http://dx.doi.org/10.4018/978-1-4666-9559-7.ch012
  • [31] A.I. Stefanakis, Introduction to constructed wetland technology, In: A.I. Stefanakis (Eds.), Constructed Wetlands For Industrial Wastewater Treatment, 1st ed., John Wiley & Sons, Ltd: Chichester, UK, (2018), 1-21. https://doi.org/10.1002/9781119268376.ch0
  • [32] A. Operacz, K. Jozwiakowski, J. Rodziewicz, W. Janczukowicz, P. Bugajski, Impact of climate conditions on pollutant concentrations in the effluent from a one-stage constructed wetland: A case study, Sustainability, 15(17) (2023), 13173. https://doi.org/10.3390/su151713173
  • [33] C.A. Madera-Parra, M.R. Pena, E.J. Pena, P.N.L. Lens, Cr (VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale, Environ. Sci. Pollut. R., 22 (2015), 12804-12815. https://doi.org/10.1007/s11356-014-3623-z
  • [34] M.Y. Sultana, A.K.M.M.B. Chowdhury, M.K. Michailides, C.S. Akratos, A.G. Tekerlekopoulou, D.V. Vayenas, Integrated Cr (VI) removal using constructed wetlands and composting, J. Hazard Mater, 281 (2015), 106-113. https://doi.org/10.1016/j.jhazmat.2014.06.046
  • [35] M.N. Iqbal, A. Ashraf, Environmental pollution: Heavy metals removal from water sources, Int. J. Altern. Fuels Energy, 2(1) (2018), 14-15. https://psmjournals.org/index.php/ijafe/article/view/186
  • [36] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, In: A. Luch (Eds.), Molecular, Clinical and Environmental Toxicology, Springer Basel AG: Basel, Switzerland, Volume 101: Experientia Supplementum, (2012), 133-164. https://doi.org/10.1007/978-3-7643-8340-4 6
  • [37] Y. Yang, Y. Zhao, R. Liu, D. Morgan, Global development of various emerged substrates utilized in constructed wetlands, Bioresour. Technol., 261 (2018), 441-452. https://doi.org/10.1016/j.biortech.2018.03.085
  • [38] H. Zhong, N. Hu, Q. Wang, Y. Chen, L. Huang, How to select substrate for alleviating clogging in the subsurface flow constructed wetland?, Sci. Total Environ., 828 (2022), 154529. https://doi.org/10.1016/j.scitotenv.2022.154529
  • [39] M.A. Maine, H.R. Hadad, G.A. Di Luca, M. de las Mercedes Mufarrege, G.C. Sanchez, Macrophyte role and metal removal in constructed wetlands for the treatment of effluents from metallurgical industries, In: E.R. Donati(Eds.), Heavy Metals In The Environment: Microorganisms and Bioremediation, CRC Press, Boca Raton, USA, (2018), 302-321. https://www.routledge.com/Heavy-Metals-in-the-EnvironmentMicroorganisms-and- Bioremediation/Donati/p/book/9781138035805
  • [40] K. Ahmad, H. R. Shah, M. Ahmad, M. Ahmed, K. Naseem, N. Riaz, A. Muhammad, A. Ayub, M. Ahmad, Z. Ahmad, A. Munwar, A. Rauf, R. Hussain, M. Ashfaq, Comparative study between two zeolitic imidazolate frameworks as adsorbents for removal of organoarsenic, As (III) and As (V) species from water, Braz. J. Anal. Chem., 9(36) (2022), 78-97. http://dx.doi.org/10.30744/brjac.2179-3425.AR-112-2021
  • [41] J. Herrera-Quintero, G. Maya-Toro, K. Colmenares-Vargas, J. Vidal-Prada, D. Barbosa-Trillos, E. Munoz-Mazo, Influence of physicochemical variables on polymer adsorption in porous media, Dyna, 89(220) (2022), 9-18. https://doi.org/10.15446/dyna.v89n220.97440
  • [42] S. Zhu, Z. Ye, Z. Liu, Z. Chen, J. Li, Z. Xiang, Adsorption characteristics of polymer solutions on media surfaces and their main influencing factors, Polymers, 13(11) (2021), 1774. https://doi.org/10.3390/polym13111774
  • [43] S. Kumar, B. Pratap, D. Dubey, V. Dutta, Removal of nutrients from domestic wastewater using constructed wetlands: Assessment of suitable environmental and operational conditions, Environ. Sustain., 3(4) (2020), 341-352. https://doi.org/10.1007/s42398-020-00124-y
  • [44] T. Zheng, X. Lin, J. Xu, J. Ren, D. Sun, Y. Gu, J. Huang, Enhanced nitrogen removal of steel rolling wastewater by constructed wetland combined with sulfur autotrophic Denitrification, Sustainability, 13(3) (2021), 1559 https://doi.org/10.3390/SU13031559
  • [45] K. Lizama-Allende, I. Jaque, J. Ayala, G. Montes-Atenas, E. Leiva, Arsenic removal using horizontal subsurface flow constructed wetlands: A sustainable alternative for arsenic-rich acidic waters, Water, 10(10) (2018), 1447. https://doi.org/10.3390/w10101447
  • [46] V.A. Papaevangelou, G.D. Gikas, V.A. Tsihrintzis, Chromium removal from wastewater using hsf and vf pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment, Chemosphere, 168 (2017), 716-730. https://doi.org/10.1016/j.chemosphere.2016.11.002
  • [47] K. Lizama-Allende, T.D. Fletcher, G. Sun, The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors, Chem. Eng. J., 179 (2012), 119-130. https://doi.org/10.1016/J.CEJ.2011.10.069
  • [48] H.T. Nguyen, B.Q. Nguyen, T.T. Duong, A.T. Bui, H.T., Nguyen, H.T. Cao, N.T. Mai, K.M. Nguyen, T.T. Pham, K.W. Kim, Pilot-scale removal of arsenic and heavy metals from mining wastewater using adsorption combined with constructed wetland, Minerals, 9(6) (2019), 379. https://doi.org/10.3390/MIN9060379
  • [49] C.A. Odinga, F.M. Swalaha, F.A.O. Otieno, K.R. Ranjith, F. Bux, Investigating the efficiency of constructed wetlands in the removal of heavy metals and enteric pathogens from wastewater, Environ. Technol. Rev., 2(1) (2013), 1-16. https://doi.org/10.1080/21622515.2013.865086
  • [50] U. Kadak, Fractional-type integral operators and their applications to trend estimation of COVID-19, Math. Methods Appl. Sci., 47(5) (2024), 3786-3808. https://doi.org/10.1002/mma.9304
  • [51] V.A. Khan, M. Arshad, M.D. Khan, Some results of neutrosophic normed space via tribonacci convergent sequence spaces, J. Inequal Appl., 2022(1) (2022), 42. https://doi.org/10.1186/s13660-022-02775-3
  • [52] N. Raza, M. Kumar, M., Mursaleen, On approximation operators involving tricomi function, Bull. Malays. Math. Sci. Soc., 47(5), (2024), 154. https://doi.org/10.1007/s40840-024-01750-z
  • [53] N. Raza, M. Kumar, M. Mursaleen, Approximation with sz´asz-chlodowsky operators employing general-appell polynomials, J. Inequal Appl., 2024(1) (2024), 26. https://doi.org/10.1186/s13660-024-03105-5
  • [54] N. Rao, A.K. Yadav, M. Mursaleen, B.K. Sinha, N.K. Jha, Szasz-beta operators via Hermite polynomial, J. King Saud Univ. Sci., 36(4) (2024), 103120. https://doi.org/10.1016/j.jksus.2024.103120
  • [55] N.L. Braha, T. Mansour, & M. Mursaleen, Some approximation properties of parametric Baskakov–Schurer–Szasz operators through a power series summability method, Complex Anal. Oper. Theory, 18(3) (2024), 71. https://doi.org/10.1007/s11785-024-01510-8
  • [56] N.L. Braha, T. Mansour, M. Mursaleen, Approximation properties by b´ezier variant of the baskakov-schurer-sz´asz-stancu operators, Math. Methods Appl. Sci., 47(4) (2024), 2419-2433. https://doi.org/10.1002/mma.9755
  • [57] L. Cheregi, M. Mursaleen, Approximation of complex q-beta-baskakov-sz´asz-stancu operators in compact disk, Demonstr. Math., 57(1) (2024), 20230158. https://doi.org/10.1515/dema-2023-0158
  • [58] C. DeVore, L. Rodriguez-Freire, N. Villa, M. Soleimanifar, J. Gonzalez-Estrella, A. Ali, J. Lezama-Pacheco, C. Ducheneaux, J. Cerrato, Mobilization of As, Fe, and Mn from contaminated sediment in aerobic and anaerobic conditions: Chemical or microbiological triggers, ACS Earth Space Chem., 6(4) (2022), 16441654. https://doi.org/10.1021/acsearthspacechem.1c00370
  • [59] L. Hu, D. Zhang, Y. Qian, Z. Nie, Y. Long, D. Shen, C. Fang, J. Yao, Microbes drive changes in Arsenic species distribution during the landfill process, Environ. Pollut., 292 Part A (2021), 118322. https://doi.org/10.1016/j.envpol.2021.118322
  • [60] Y. Kang, H. Sun, B. Gao, J. Dang, M. Zhang, M. Li, J. Dong, H. Wu, J. Zhang, Z. Guo, Enhanced reduction of Cr (VI) in ironcarbon micro-electrolysis constructed wetlands: Mechanisms of iron cycle and microbial interactions, Chem. Eng. J., 439 (2022), 135742. https://doi.org/10.1016/j.cej.2022.135742
  • [61] R.T. Kapoor, M.F.B. Mfarrej, P. Alam, J. Rinklebe, P. Ahmad, Accumulation of chromium in plants and its repercussion in animals and humans, Environ. Pollut., 301 (2022), 119044. https://doi.org/10.1016/j.envpol.2022.119044
  • [62] S. Krishnasamy, R. Lakshmanan, M. Ravichandran, Phytoremediatiation of metal and metalloid pollutants from farmland: An in-situ soil conservation, In: K.F. Mendes, R. Nogueira de Sousa, K.C. Mielke ( Eds.), Biodegradation Technology of Organic and Inorganic Pollutants, IntechOpen, (2021), 303-320.
  • [63] A. Kunhikrishnan, G. Choppala, B. Seshadri, H. Wijesekara, N.S. Bolan, K. Mbene, W.I. Kim, Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As (V) and Cr (VI) in contaminated soils, J. Environ. Manage., 186 (2017), 183-191.
  • [64] L. Li, K. Zhang, R.A. Gill, F. Islam, M.A. Farooq, J.Wang, W. Zhou, Ecotoxicological and interactive effects of copper and chromium on physiochemical, ultrastructural, and molecular profiling in Brassica Napus L., BioMed Res. Int., 1 (2018), 1-17. https://doi.org/10.1155/2018/9248123
  • [65] K. Lizama-Allende, J. Ayala, I. Jaque, P. Echeverr˜AƒAˆ a, The removal of arsenic and metals from highly acidic water in horizontal subsurface flow constructed wetlands with alternative supporting media, J. Hazard. Mater., 408 (2021), 124832. https://doi.org/10.1016/j.jhazmat.2020.124832
  • [66] B. Majumder, S. Das, S. Mukhopadhyay, A.K. Biswas, Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza Sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability, Protoplasma, 256 (2019), 193211. https://doi.org/10.1007/s00709-018-1290-5
  • [67] D. Raj, S.K. Maiti, Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): An epitomised review, Environ. Monit. Assess., 192(2) (2020), 108. https://doi.org/10.1007/s10661-019-8060-5
  • [68] S. Sultana, M.H. Rashid, S.I. Huq, Arsenic accumulation in crops in relation to their water requirement, The Bangladesh J. Sci. Res., 28 (2016), 171-180. https://doi.org/10.3329/BJSR.V28I2.26789
  • [69] M. Wu, Q. Li, X. Tang, Z. Huang, L. Lin, M. Scholz, Arsenic (V) removal in wetland filters treating drinking water with different substrates and plants, Int. J. Environ. An. Ch., 94(6) (2014), 618-638. https://doi.org/10.1080/03067319.2013.864647
  • [70] Z. Yuan, W. Gustave, J. Boyle, R. Sekar, J. Bridge, Y. Ren, X. Tang, B. Guo, Z. Chen, Arsenic Behavior across soil-water interfaces in paddy soils: Coupling, decoupling and speciation, Chemosphere, 269 (2020), 128713. https://doi.org/10.1016/j.chemosphere.2020.128713
  • [71] Z. Zakaria, N.S. Zulkafflee, N.A. Mohd Redzuan, J. Selamat, M.R. Ismail, S.M. Praveena, G. Toth, A.F. Abdull Razis, Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks, Plants, 10(6) (2021), 1070. https://doi.org/10.3390/plants10061070
  • [72] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, M. Sadeghi, Toxic Mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Front. Pharmacol., 12 (2021), 643972. https://doi.org/10.3389/fphar.2021.643972
There are 72 citations in total.

Details

Primary Language English
Subjects Mathematical Optimisation, Numerical and Computational Mathematics (Other)
Journal Section Articles
Authors

Mohammad Baquir 0000-0001-7618-5978

Nadeem Khalil 0000-0003-1843-5232

Sohail Ayub 0000-0002-9468-9181

Manoj Kumar 0009-0005-0697-3190

Early Pub Date November 12, 2024
Publication Date
Submission Date September 4, 2024
Acceptance Date November 2, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Baquir, M., Khalil, N., Ayub, S., Kumar, M. (2024). Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale. Universal Journal of Mathematics and Applications, 7(4), 170-179. https://doi.org/10.32323/ujma.1542567
AMA Baquir M, Khalil N, Ayub S, Kumar M. Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale. Univ. J. Math. Appl. November 2024;7(4):170-179. doi:10.32323/ujma.1542567
Chicago Baquir, Mohammad, Nadeem Khalil, Sohail Ayub, and Manoj Kumar. “Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale”. Universal Journal of Mathematics and Applications 7, no. 4 (November 2024): 170-79. https://doi.org/10.32323/ujma.1542567.
EndNote Baquir M, Khalil N, Ayub S, Kumar M (November 1, 2024) Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale. Universal Journal of Mathematics and Applications 7 4 170–179.
IEEE M. Baquir, N. Khalil, S. Ayub, and M. Kumar, “Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale”, Univ. J. Math. Appl., vol. 7, no. 4, pp. 170–179, 2024, doi: 10.32323/ujma.1542567.
ISNAD Baquir, Mohammad et al. “Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale”. Universal Journal of Mathematics and Applications 7/4 (November 2024), 170-179. https://doi.org/10.32323/ujma.1542567.
JAMA Baquir M, Khalil N, Ayub S, Kumar M. Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale. Univ. J. Math. Appl. 2024;7:170–179.
MLA Baquir, Mohammad et al. “Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale”. Universal Journal of Mathematics and Applications, vol. 7, no. 4, 2024, pp. 170-9, doi:10.32323/ujma.1542567.
Vancouver Baquir M, Khalil N, Ayub S, Kumar M. Numerical Approximation Tool Prediction on Potential Broad Application of Subsurface Vertical Flow Constructed Wetland (SSVF CW) Using Chromium and Arsenic Removal Efficiency Study on Pilot Scale. Univ. J. Math. Appl. 2024;7(4):170-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.