Yıl 2016, Cilt 8 , Sayı 2, Sayfalar 11 - 21 2016-06-15

Biology, Mechanism and Applications of CRISPR-Cas Immune System
CRISPR-Cas İmmün Sisteminin Biyolojisi, Mekanizması ve Kullanım Alanları

Zehra GÜN GÖK [1] , Beste ÇAĞDAŞ TUNALI [2]


Targeted nucleases are widely used as tools for genome editing. Recently, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used in the genome editing studies for the first time, and since then has largely revolutionized the field. The great success of the CRISPR/Cas9 genome editing tool is powered by the simple design principle of the guide RNA that aims Cas9 to the target DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies lately used CRISPR-Cas9 to successfully arrange disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, increasing hope for therapeutic genome editing in the clinics. In this study, we focus on the CRISPR-Cas9 Type II system, provide specific examples for use of the system, and highlight the advantages and disadvantages of CRISPR versus other techniques. Also in this review, we briefly describe the development and applications of Cas9 which is derived from a remarkable microbial defense system for a variety of research or translational applications while highlighting challenges.

Hedeflenmiş nükleazlar genom düzenlenmesinde yaygın olarak kullanılmaktadır. Kısa süre önce, düzenli aralıklarla bölünmüş palindromik tekrar kümeleri (CRISPRs)-ilişkili Cas9 nükleazları genom düzenleme çalışmalarında ilk defa kullanılmış ve o zamandan beri bu alanda devrim yaratmıştır. CRISPR-Cas9 genom düzenleme aracının bu büyük başarısının ardında Cas9’u istenilen DNA lokusuna hedefleyen kılavuz RNA’nın tasarımının basitliği ve CRISPR-Cas9 aracılı DNA kırılmalarının yüksek özgüllük ve verimlilikte olması yatmaktadır. Yakın zamanda yapılan bazı çalışmalarda, in vivo hayvan modellerinde ve ex vivo somatik ve uyarılmış pluripotent kök hücrelerinde hastalığa neden olan allellerin düzenlenmesinde CRISPR-Cas9 sistemi başarıyla kullanılarak terapötik genom düzenlenmesinin klinik uygulamaları için umutları arttırmıştır. Bu derleme ile bu sistemlerden en çok kullanılan CRISPR-Cas9 Tip II sisteminin diğer sistemlere göre avantaj ve dezavantajları belirtilmiş ve bu sistemler ile yapılan uygulamalara değinilmiştir. Ayrıca bu derlemede, çeşitli araştırma ya da translasyonel uygulamalarda kullanılan ve olağanüstü bir mikrobiyal savunma sisteminden türetilen CRISPR-Cas9’un gelişiminden ve uygulamalarındaki zorluklarından bahsedilmiştir.

  • Anonim, “Six Questions About CRISPRs, Microbial Embraces”, http://schaechter.asmblog.org/schaechter/2011/04/six-questions-about-crisprs.html (Erişim Tarihi: 20.01.2016). Barrangou, R., “RNA-mediated programmable DNA cleavage”, Nature Biotechnology 30, 836-838, 2012. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., Horvath, P., “CRISPR provides acquired resistance against viruses in prokaryotes”, Science 315, 1709-1712, 2007. Barrangou, R., Marraffini, L. A., “CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity”, Molecular Cell 54, 234-244, 2014. Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti V. A., Marraffini L. A., “Exploiting CRISPR-Cas nucleases to produce sequence specific antimicrobials”, Nature Biotechnology 32 (11), 1146-1150, 2014. Bortesi, L., Fisher, R., “The CRISPR/Cas9 system for plant genome editing and beyond”, Biotechnology Advances 33(1), 41-52, 2015 Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G. W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., Huang, B., “Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system”, Cell 155, 1479-1491, 2013. Citorik, R. J., Mimee, M., Lu, T. K., “Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases”, Nature Biotechnology 32 (11), 1141-1145, 2014. Cong, L, Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., Zhang, F., “Multiplex genome engineering using CRISPR/Cas systems”, Science 339 (6121), 819-23, 2013. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., Charpentier, E., “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III”, Nature 471 (7340), 602-7, 2011. Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., Moineau, S., “The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA”, Nature 468 (7320), 67-71, 2010. Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., “Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria”, Proceedings of the National Academy of Sciences 109 (39), 2579-86, 2012. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G.A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., Qi, L. S., “CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes”, Cell 154, 442-451, 2013. Horvath, P., Coute-Monvoisin, A.C., Romero, D.A., Boyaval, P., Fremaux, C., Barrangou, R. (2009). Comparative analysis of CRISPR loci in lactic acid bacteria genomes. International Journal of Food Microbiology 131, 62-70. Horvath, P., Romero, D. A., Coute-Monvoisin, A. C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Fremaux, C., Barrangou, R., “Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus”, Journal of Bacteriology 190, 1401-1412, 2008. Hsu, P. D., Lander, E. S., Zhang, F., “Development and Applications of CRISPR-Cas9 for Genome Engineering”, Cell 157, 1262-1278, 2014. Hu, W., Kaminskia, R., Yanga, F., Zhang, Y., Cosentino, L., Lia, F., Luob, B., Alvarez-Carbonellc, D., Garcia-Mesac, Y., Karn, J., Mo, X., Khalili, K., “RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection”, Proceedings of the National Academy of Sciences 111(31), 11461-11466, 2014. Jiang, F., Doudna, J.A. (2015). The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100-111 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096), 816-21. Kelly, T.J., Smith, H.O., “A restriction enzyme from Hemophilus influenzae”, II. Journal of Molecular Biology 51, 393-409, 1970. Liao, H. K., Gu, Y., Diaz, A., Marlett, J., Takahashi, Y., Li, M., Suzuki, K., Xu, R., Hishida, T., Chang, C. J., Esteban, C. R., Young, J., Izpisua Belmonte, J. C., “Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells”, Nature Communications 6, 1-10, 2015. Lin, S. R., Yang, H. C., Kuo, Y.T., Liu, C. J.,Yang, T. Y., Sung, K. C., Lin, Y. Y., Wang, H. Y., Wang, C. C., Shen, Y. C., Wu, F. Y., Kao, C. H., Chen, D. S., Chen P. J., “The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo”, Molecular Therapy - Nucleic Acids - Nature 3, e186, 2014. Long, C., McAnally, J. R., Shelton, J. M., Mireault, A. A., Bassel-Duby, R., Olson, E. N., “Prevention of muscular dystrophy in mice by CRISPR/Cas9- mediated editing of germline DNA”, Science 345 (6201), 1184-1188, 2014. Malina, A., Mills, J. R., Cencic, R., Yan, Y., Fraser, J., Schippers, L. M., Paquet, M., Dostie, J., Pelletier, J., “Repurposing CRISPR/Cas9 for in situ functional assays”, Genes & Development 27, 2602-2614, 2012. Mandal, P. K., Ferreira, L. M., Collins, R., Meissner, T. B., Boutwell, C. L., Friesen, M., Vrbanac, V., Garrison, B. S., Stortchevoi, A., Bryder, D., Musunuru, K., Brand, H., Tager, A. M., Allen, T. M., Talkowski, M. E., Rossi, D. J., Cowan, C. A., “Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9”, Cell Stem Cell 15, 643-52, 2014. Murphy, K., J”aneway’s Immunobiology”, Garland Science, New York, 2012. Nishimasu, H., Ran, F. A., Hsu P. D., Konermann, S., Dohmae, N., Shehata, S. I., Ishitani, R., Zhang, F., Nureki, O., “Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA”, Cell 156, 935-949, 2014. Pennisi, E., “The CRISPR craze”, Science 341, 833-836, 2013. Peters, J. M., Silvis, M., Zhao, D., Hawkins, J. S., Gross, C. A., Qi, L. S., “Bacterial CRISPR: accomplishments and prospects”, Current Opinion in Microbiology 27, 121-126, 2015. Pourcel, C., Salvignol, G., Vergnaud, G., “CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies”, Microbiology 151, 653-663, 2005. Quetier F., “The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing”, Plant Science 242, 65-76 DOI: 10.1016/j.plantsci.2015.09.003, 2015. Quiberoni, A., Moineau, S., Rousseau, G. M., Reinheimer, J., Ackermann, H. W., “Streptococcus thermophilus bacteriophages”, International Dairy Journal - Elsevier 20, 657-664, 2010. Rath, D., Amlinger, L., Rath, A., Lundgren, M., “The CRISPR-Cas immune system: Biology, mechanisms and applications”, Biochimie 117, 119-128, 2015. Sander, J. D., Joung, J. K., “CRISPR-Cas systems for editing, regulating and targeting genomes”, Nature Biotechnology 32, 347-355, 2014. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., Siksnys, V., “The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli”, Nucleic Acids Research 39 (21), 9275-9282, 2011. Savic, N., Schwank, G., “Advances in therapeutic CRISPR/Cas9 genome editing”, Translational Research 168, 15-21, 2016. Schwank, G., Koo, B. K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C. K., Nieuwenhuis, E. E. S., Beekman, J. M., Clevers, H., “Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients”, Cell Stem Cell 13 (6), 653-658, 2013. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., Doudna, J. A., “DNA interrogation by the CRISPR RNA-guided endonuclease Cas9”, Nature 507, 62-7, 2014. Wilkinson, R., Wiedenheft, B., “A CRISPR method for genome engineering”, F1000 Prime Reports 6, 3 (doi:10.12703/P6-3), 2014. Wood, A. J., Lo, T. W., Zeitler, B., Pickle, C. S., Ralston, E. J., Lee, A. H., Amora, R., Miller, J. C., Leung, E., Meng, X., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., Meyer, B. J., “Targeted genome editing across species mouse via use of CRISPR-Cas9”, Cell Stem Cell 13 (6), 659-662, 2011. Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., Li, J., “Correction of a genetic disease in using ZFNs and TALENs”, Science 333, 307, 2013. Ye, L., Wang, J., Beyer, A.I., Teque, F., Cradick, T. J., Qi, Z., Chang, J. C., Bao, G., Muench, M. O., Yu, J., Levy, J. A., Kan, Y. W., “Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection”, Proceedings of the National Academy of Sciences U.S.A. 111 (26), 9591-9596, 2014. Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T., Anderson, D. G., “Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology 32, 551-553, 2014. Zhen, S., Hua, L., Liu, Y. H., Gao, L. C., Fu, J., Wan, D. Y., Dong, L. H., Song, H. F., Gao, X., “Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virüs”, Gene Therapy 22, 404-412, 2015.
Bölüm Makaleler
Yazarlar

Yazar: Zehra GÜN GÖK

Yazar: Beste ÇAĞDAŞ TUNALI

Tarihler

Yayımlanma Tarihi : 15 Haziran 2016

APA GÜN GÖK, Z , ÇAĞDAŞ TUNALI, B . (2016). Biology, Mechanism and Applications of CRISPR-Cas Immune System. International Journal of Engineering Research and Development , 8 (2) , 11-21 . DOI: 10.29137/umagd.346148