Yıl 2018, Cilt 10 , Sayı 1, Sayfalar 1 - 11 2017-01-29

Making Adsorption of Effective Agents of Antidepressıon Drugs: Kinetıc and Isotherm
Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi

Orhan BAYTAR [1]


In this study, the adsorption of the active agent of venlafaxine and doxylamine antidepressant drugs was investigated by using the high surface area active carbon obtained in our previous study. The effects of initial pH of solution, initial concentration of solution and amount of activated carbon were examined in adsorption experiments. The adsorption equilibrium data were applied to the Langmuir and Freundlich isotherms and the best Langmuir isotherm was determined. Langmuir isotherm was found as 8.764 and 10.764 for qmax venlafaxine and doxylamine substances, respectively. The adsorption kinetics of the drug substance were calculated for pseudo first order and pseudo second order kinetic models and it was determined to be the best pseudo second order kinetic model.


Bu çalışmada bir önceki çalışmamız elde ettiğimiz yüksek yüzey alana sahip aktif karbon kullanılarak venlafaxine ve doxylamine antiderprasan ilaçların etken maddesinin adsorpsiyonu incelenmiştir. Adsorpsiyon çalışmalarında çözelti başlangıç pH, çözelti başlangıç konsantrasyonu ve aktif karbon miktarı parametrelerin etkisi incelenmiştir. Adsorpsiyonun denge verileri Langmuir ve freundlich izotermlerine uygulanmış ve en iyi Langmuir izotermine uyduğu belirlenmiştir. Langmuir izotermine qmax venlafaxine ve doxylamine maddeleri için sırasıyla 8.764 ve 10.764 mg/g olduğu tespit edilmiştir. İlaç etken maddelerinin adsorpsiyon kinetiği yalancı birinci derece ve yalancı ikinci derece kinetik modeller için hesaplanmış ve en iyi yalancı ikinci derece kinetik model olduğu belirlenmiştir.

  • Banerjee, S., Sharma, G.C., Chattopadhyaya, M.C., & Sharma, Y.C., (2014). Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH). Journal of Environmental Chemical Engineering, 2(3), 1870–1880.
  • Cerit, N. A. (2009) Venlafaksin Kullanan Depresyon Hastalarında Farmakokinetik, Klinik Etki Ve Advers Etkilerde Zaman Bağımlı Değişikliklerin İncelenmesi. Gazi Üniversitesi. Ankara.
  • Cherifi, H., Fatiha, B., & Salah, H. (2013). Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Applied Surface Science, 282, 52–59.
  • Devecioğlu, M. C. (2017). Çocuklarda Zehirlenmelere Yaklaşım http://www.dicle.edu.tr/Contents/30aa8456-3440-4519-bdf7-a7c229370856.pdf
  • Hameed, B.H., & El-Khaiary, M.I., (2008). Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, 157(2-3), 344–351.
  • Hassan, F., Abdel-Mohsen, M., & Fouda, M.M.G., (2014). Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 102(1), 192–198.
  • Ho, Y.S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3), 735–742.
  • Lagergren, S., & Svenska, B. K., (1996). Ventenskapsakad Handl. 24 as cited by Wasey et al.,Water Res. 30 1143–1148.
  • Langmuir, I., (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40, 1361–1368.
  • Nam, S.-W., Choi, D.-J., Kim, S.-K., Her, N., & Zoh, K.-D., (2014). Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. Journal of hazardous materials , 270, 144–152.
  • Saka, C. (2012). BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis, 95, 21–24.
  • Sahin, Ö., & Saka, C. (2013). Preparation and characterization of activated carbon from acorn shell by physical activation with H2O–CO2 in two-step pretreatment. Bioresource Technology, 136, 163–168
  • Şahin, Ö., Saka, C., Ceyhan, A. A., & Baytar O. (2015) Preparation of High Surface Area Activated Carbon from Elaeagnus angustifolia Seeds by Chemical Activation with ZnCl2 in One-Step Treatment and its Iodine Adsorption. Separation Science and Technology, 50, 886–891,
  • Şahin, Ö., Saka, C., Ceyhan, A. A., & Baytar O. (2016). The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utılızatıon, And Envıronmental Effects, 38(12), 1756–1762.
  • Shrestha, S., Son, G., Lee, S.H., & Lee, T.G. (2013). Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere, 92(8), 1053–1061.
  • Somun, G. (2014). Formatıon Of N-Nıtrosodımethylamıne (NDMA) Durıng Monochloramıne Dısınfectıon Of 8 Selected Pharmaceutıcals. The Degree Of Master. Mıddle East Technıcal Unıversıty. Ankara
  • Yalvaç, D. (2006). İntihar Girişiminde Bulunan Bireylerde Psikiyatrik Morbidite, Kişilik Bozukluğu Ve Bazı Sosyodemografik Ve Klinik Etkenlerle İlişkisi. İnönü Üniversitesi. Malatya.
Birincil Dil tr
Konular Mühendislik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-2915-202X
Yazar: Orhan BAYTAR

Tarihler

Yayımlanma Tarihi : 29 Ocak 2017

Bibtex @araştırma makalesi { umagd419657, journal = {International Journal of Engineering Research and Development}, issn = {}, eissn = {1308-5514}, address = {Kırıkkale Üniversitesi Mühendislik Fakültesi Dekanlığı Kampüs 71450 Yahşihan/KIRIKKALE}, publisher = {Kırıkkale Üniversitesi}, year = {2017}, volume = {10}, pages = {1 - 11}, doi = {10.29137/umagd.419657}, title = {Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi}, key = {cite}, author = {BAYTAR, Orhan} }
APA BAYTAR, O . (2017). Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi. International Journal of Engineering Research and Development , 10 (1) , 1-11 . DOI: 10.29137/umagd.419657
MLA BAYTAR, O . "Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi". International Journal of Engineering Research and Development 10 (2017 ): 1-11 <https://dergipark.org.tr/tr/pub/umagd/issue/36839/419657>
Chicago BAYTAR, O . "Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi". International Journal of Engineering Research and Development 10 (2017 ): 1-11
RIS TY - JOUR T1 - Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi AU - Orhan BAYTAR Y1 - 2017 PY - 2017 N1 - doi: 10.29137/umagd.419657 DO - 10.29137/umagd.419657 T2 - International Journal of Engineering Research and Development JF - Journal JO - JOR SP - 1 EP - 11 VL - 10 IS - 1 SN - -1308-5514 M3 - doi: 10.29137/umagd.419657 UR - https://doi.org/10.29137/umagd.419657 Y2 - 2017 ER -
EndNote %0 Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi %A Orhan BAYTAR %T Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi %D 2017 %J International Journal of Engineering Research and Development %P -1308-5514 %V 10 %N 1 %R doi: 10.29137/umagd.419657 %U 10.29137/umagd.419657
ISNAD BAYTAR, Orhan . "Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi". International Journal of Engineering Research and Development 10 / 1 (Ocak 2017): 1-11 . https://doi.org/10.29137/umagd.419657
AMA BAYTAR O . Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi. IJERAD. 2017; 10(1): 1-11.
Vancouver BAYTAR O . Antideprasan İlaçların Etken Maddelerinin Adsorpsiyonu: Kinetik ve İzotermi. International Journal of Engineering Research and Development. 2017; 10(1): 11-1.