Yıl 2019, Cilt 11 , Sayı 1, Sayfalar 316 - 327 2019-01-31

Mathematical Modeling and Simulation of the Photovoltaic System's Output Power depends on Temperature and Irradiance
Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu

Süleyman Adak [1] , Hasan Cangi [2] , Ahmet Serdar Yılmaz [3]


The output power of photovoltaic (PV) systems depends on solar radiation and temperature. In this article, the change of output power of PV system is examined depens on temperature and solar irradiance. Furthermore, this study outlines the working principle of PV panel as well as PV array. Off- grid PV system is modeled by using a Matlab/simulation program and detail study has been carried out in this work. Besides, Output power of PV system was analyzed for different temperature and irradiance values. Simulink equivalent of the PV system was created for partial shading on PV panels. I-V and P-V curves were found for partial shaded conditions. As a result, analytical expression of output power of PV system was found by a is statistical package for the social sciences (SPSS) program.

Fotovoltaik (PV) sistemlerin çıkış gücü, güneş ışınımı ve sıcaklık ile ilgilidir. Bu makalede, PV sisteminin çıkış gücünün sıcaklık ve güneş ışınımına bağlı değişimi incelenmiştir. Ayrıca, bu çalışmada PV panellerinin yanında PV dizininin çalışma prensibi özetlemiştir. Off-grid PV sistemi Matlab/simülasyon programı kullanılarak modellenmiş ve bu çalışmada detaylı çalışması gerçekleştirilmiştir. Ayrıca, farklı sıcaklık ve ışınım değerleri için PV sisteminin çıkış gücü analiz edilmiştir. Sonuç olarak, PV sisteminin çıkış gücünün analitik ifadesi, Sosyal Bilimler İçin İstatistik Programı (SPSS) kullanılarak bulunmuştur.

  • Atlas, I.H., Mengi, O. Ö. (2008). AA ve DA Yüklerini Besleyen FV/Akü Grubunun Matlab/Simulink Ortamında Modellenmesi ve Simulasyonu. Elektrik- Elektronik ve Bilgisayar Mühendisligi Sempozyumu (ELECO). 135-139.
  • Bayrak, G., Cebeci, M. (2012). 3,6 kW Gücündeki Fotovoltaik Generatörün Matlab/Simulink İle Modellenmesi”, Erçiyes Üniversitesi, Fen Bilimleri Enstitüsü dergisi, 28(3), 198-204.
  • Badawy, M.O., Yilmaz, A.S., Sozer, Y., and Husein I. (2014).Parallel Power Processing Topology for Solar PV Applications, IEEE Transactions on Industry Applications, Vol. 50, No.2, pp. 1245-1255.
  • Cam, E., Gorel, G., Mamur, H. (2017). Use of the Genetic Algorithm-Based Fuzzy Logic Controller for Load-Frequency Control in a Two Area Inter connected Power System, Appl. Sci. , 7(3), 308; doi:10.3390/app7030308.
  • Cangi H., Adak S., (2015). Analysis of solar inverter THD according to PWM’s carrier frequency, 4 th International Conference on Renewable Energy Research and Applications,Pelermo, Italy, 22-25 Now.
  • Chatterjee, A., Keyhani, A., and Kapoor, D. (2011). Identification of photovoltaic source models”,IEEE Trans. Energy Convers.,vol. 26, no. 3, pp. 883–889, Sep.
  • Cotfas, D., T.,Cotfas, P. A., and S., Kaplanis. (2013). Methods to determine the dc parameters of solar cells: A critical review, Renewable and Sustainable Energy Reviews, vol. 28, pp. 588–596.
  • El Khateb, A., Abd Rahim H. N., Selvara J.,and Williams, B. W. (2015). DC-to-DC Converter with Low Input Current Ripple for Maximum Photovoltaic Power Extraction, IEEE Transactions on Industrial Electronics, APRIL.
  • Fangrui, L., Shanxu, D., Fei L., Bangyin L., and Yong K. (2008). A Variable Step Size INC MPPT Method for PV Systems IEEE Transactions on Industrial Electronics, 55(7).
  • Hirose, T., Osaki, Y., Kuroki, N., and Numa, M. (2010). A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities, in Proc. Eur. Solid State Circuits Conf, Sep.,pp. 114-117.
  • İzgi, E., İnan A., Ay S. (2008). The Analysis and simulation of voltage distribution over string insulators using Matlab/Simulink, Electric power components and systems, vol.36, pp.109-123.
  • Lo Brano, V.,Orioli A., Ciulla G., and Di Gangi, A., (2010). An improved five parameter model for photovoltaic modules”, Sol. Energy Mater. Sol. Cells,vol. 94, no. 8, pp. 1358–1370.
  • Nema, S., Nema R.K., Agnihotri, G. (2010).MATLAB/Simulink based study of photovoltaic cells / modules/array and their experimental verification, International journal of Energy and Environment , vol.1, No.3, pp.487-500.
  • Nou, J., Chauvin R., Thil S., and Grieu S. (2013). A new approach to of the clear-sky direct normal irradiance, Appl. Math. Modelling, vol. 40, no. 1516, pp. 7245–7264.
  • Özdemir, A. Erdem, Z.,(2017). Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters - Journal of Systems and Control Engineering - Vol. - pp. - ISSN : - DOI : DOI: 10.1177/0959651817740006.
  • Perez, M.D.,and Gorji N.E., (2016). Modeling of temperatureprofile, thermalrun a wayand hot spot in thin film solar cells, Mater. Sci. Semicond. Process.,vol. 41, pp. 529–534.
  • Rustemli, S., Dincer F. (2011). Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink, Electronics and Electrical Engineering, ISSN 1392-1215, no. 3(109), pp. 35-40.
  • Ramlim, A., Prasetyono, E. Wicaksana, R. W. Windarko, Sedraoui, N. A. K., and Al-Turki Y. A. (2016). On the investigation of photo voltaic output power reduction due to dust accumulation and we ather conditions, Renew. Energy, vol. 99, pp. 836–844.
  • Schuss, C., Leppanen K., Saarela J., Fabritius T., Eichberger B.,and Rahkonen T.(2016). Detecting Defects in Photovoltaic Cells and Panels and Evaluating the Impact on Output Performances, IEEE Transactions on Instrumentation and Measurement, vol. 65, issue: 5, pp. 1-12.
  • Sekkeli, M., Acikgoz, H. Gani A., Kececioglu, O.F. (2015).Simulation Study and Speed Control of Permanent Magnet Synchronous Motor By Using Self Tuning Fuzzy PID Controller, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 18, no. 1, pp. 17–22, Aug.
  • Şahin, M. E., Okumuş, H. İ. (2013). Güneş Pili Modülünün Matlab/Simulink ile Modellenmesi ve Simülasyonu Cilt 3, Sayı 5, EMO Bilimsel Dergi, Cilt 3, Sayı 5, Syf 17-25, Haziran.
  • Uno, M., Kukita,A. (2017). Current sensorless equalization strategy for a single-switch voltage equalizer using multi stacked buck–boost converters for photovoltaic modules under partial shading,IEEE Trans. Ind. Appl.,vol. 53, no. 1, pp. 420–429, Jan./Feb.
  • Xiao, W.,Edwin, F. F., Spagnuolo, GJatsvevich, J. (2013). Efficient approach for modelling and simulating photovoltaic power system, IEEE Journal of photovoltaics., vol. 3, no. 1, pp. 500-508, Jan.
  • Yazdani A.,Dash P.P. (2009). A Control Methodology and Characterization of Dynamics for a Photovoltaic (PV) System Interfaced With a Distribution Network, IEEE Trans. on Power Delivery, Vol. 24, No. 3, July.
Birincil Dil tr
Konular Mühendislik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-2345-6789
Yazar: Süleyman Adak (Sorumlu Yazar)
Kurum: MARDİN ARTUKLU ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-5735-3857
Yazar: Hasan Cangi
Kurum: KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0001-6954-7299
Yazar: Ahmet Serdar Yılmaz
Kurum: KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ocak 2019

Bibtex @araştırma makalesi { umagd456988, journal = {International Journal of Engineering Research and Development}, issn = {}, eissn = {1308-5514}, address = {Kırıkkale Üniversitesi Mühendislik Fakültesi Dekanlığı Kampüs 71450 Yahşihan/KIRIKKALE}, publisher = {Kırıkkale Üniversitesi}, year = {2019}, volume = {11}, pages = {316 - 327}, doi = {10.29137/umagd.456988}, title = {Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu}, key = {cite}, author = {Adak, Süleyman and Cangi, Hasan and Yılmaz, Ahmet Serdar} }
APA Adak, S , Cangi, H , Yılmaz, A . (2019). Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. International Journal of Engineering Research and Development , 11 (1) , 316-327 . DOI: 10.29137/umagd.456988
MLA Adak, S , Cangi, H , Yılmaz, A . "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu". International Journal of Engineering Research and Development 11 (2019 ): 316-327 <https://dergipark.org.tr/tr/pub/umagd/issue/39915/456988>
Chicago Adak, S , Cangi, H , Yılmaz, A . "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu". International Journal of Engineering Research and Development 11 (2019 ): 316-327
RIS TY - JOUR T1 - Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu AU - Süleyman Adak , Hasan Cangi , Ahmet Serdar Yılmaz Y1 - 2019 PY - 2019 N1 - doi: 10.29137/umagd.456988 DO - 10.29137/umagd.456988 T2 - International Journal of Engineering Research and Development JF - Journal JO - JOR SP - 316 EP - 327 VL - 11 IS - 1 SN - -1308-5514 M3 - doi: 10.29137/umagd.456988 UR - https://doi.org/10.29137/umagd.456988 Y2 - 2018 ER -
EndNote %0 Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu %A Süleyman Adak , Hasan Cangi , Ahmet Serdar Yılmaz %T Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu %D 2019 %J International Journal of Engineering Research and Development %P -1308-5514 %V 11 %N 1 %R doi: 10.29137/umagd.456988 %U 10.29137/umagd.456988
ISNAD Adak, Süleyman , Cangi, Hasan , Yılmaz, Ahmet Serdar . "Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu". International Journal of Engineering Research and Development 11 / 1 (Ocak 2019): 316-327 . https://doi.org/10.29137/umagd.456988
AMA Adak S , Cangi H , Yılmaz A . Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. IJERAD. 2019; 11(1): 316-327.
Vancouver Adak S , Cangi H , Yılmaz A . Fotovoltaik Sistemin Çıkış Gücünün Sıcaklık ve Işımaya Bağlı Matematiksel Modellemesi ve Simülasyonu. International Journal of Engineering Research and Development. 2019; 11(1): 327-316.