Research Article
BibTex RIS Cite

Farklı Kimyasallarla Modifiye Edilen Doğal Atık Takviyeli Epoksi Reçine Matrisli Kompozitlerin Hazırlanması ve Karakterizasyonu

Year 2019, Volume: 11 Issue: 1, 77 - 86, 31.01.2019
https://doi.org/10.29137/umagd.459758

Abstract
















Bu çalışmada doğal atık bir malzeme olan kayısı çekirdeği kabuğu (KÇK),
bisfenol-A tipi epoksi reçine matrisli kompozit malzemelerin hazırlanması için
dolgu maddesi olarak kullanılmıştır.  Ayrıca,
doğal dolgu malzemesi NaOH ve asetik asitle kimyasal olarak modifiye edilerek çevre
dostu üstün özellikli kompozitlerin hazırlanması hedeflenmiştir. Modifiye
edilen doğal meyve çekirdeği atığının yapısı FTIR ile aydınlatılmış, partikül
boyutu tayin edilmiştir. Kompozitler taramalı elektron mikroskobu (SEM),
X-ışını difraksiyon cihazı (XRD) ve termal gravimetrik analiz (TGA) ile
karakterize edilmiştir. Kompozitlerin mekanik ve termal özelliklerine dolgu maddesi
oranının etkisi incelenmiştir.
    

References

  • Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering, 47, 35-41. doi:https://doi.org/10.1016/j.compositesb.2012.10.046
  • Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90, 589-597. doi:https://doi.org/10.1016/j.compositesa.2016.08.025
  • Fraga, F., Vázquez, I., Rodríguez-Núñez, E., Martínez-Ageitos, J. M., & Miragaya, J. (2009). Influence of the filler CaCO3 on the cure kinetic of the epoxy network diglycidyl ether of bisphenol a (BADGE n = 0) with isophorone diamine. Journal of Applied Polymer Science, 114(5), 3338-3342. doi:doi:10.1002/app.30253
  • Ho, M.-p., Wang, H., Lee, J.-H., Ho, C.-k., Lau, K.-t., Leng, J., & Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8), 3549-3562. doi:https://doi.org/10.1016/j.compositesb.2011.10.001
  • Jeyranpour, F., Alahyarizadeh, G., & Arab, B. (2015). Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 62, 157-164. doi:https://doi.org/10.1016/j.jmgm.2015.09.012
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:https://doi.org/10.1016/j.compositesb.2012.04.053
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 53, 362-368. doi:https://doi.org/10.1016/j.compositesb.2013.05.048
  • Kocaman, S., Karaman, M., Gursoy, M., & Ahmetli, G. (2017). Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate Polymers, 159, 48-57. doi:https://doi.org/10.1016/j.carbpol.2016.12.016
  • Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 15(1), 25-33. doi:https://doi.org/10.1007/s10924-006-0042-3
  • Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z., & Zhou, Z. (2013). Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites Part B: Engineering, 51, 28-34. doi:https://doi.org/10.1016/j.compositesb.2013.02.031
  • Melo, J. D. D., Carvalho, L. F. M., Medeiros, A. M., Souto, C. R. O., & Paskocimas, C. A. (2012). A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Composites Part B: Engineering, 43(7), 2827-2835. doi:https://doi.org/10.1016/j.compositesb.2012.04.046
  • Mishra, S., Tripathy, S. S., Misra, M., Mohanty, A. K., & Nayak, S. K. (2002). Novel Eco-Friendly Biocomposites: Biofiber Reinforced Biodegradable Polyester Amide Composites—Fabrication and Properties Evaluation. Journal of Reinforced Plastics and Composites, 21(1), 55-70. doi:https://doi.org/10.1106%2F073168402024282
  • Mustata, F., Tudorachi, N., & Rosu, D. (2012). Thermal behavior of some organic/inorganic composites based on epoxy resin and calcium carbonate obtained from conch shell of Rapana thomasiana. Composites Part B: Engineering, 43(2), 702-710. doi:https://doi.org/10.1016/j.compositesb.2011.11.047
  • Nakamura, Y., Yamaguchi, M., Okubo, M., & Matsumoto, T. (1992). Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. Journal of Applied Polymer Science, 45(7), 1281-1289. doi:doi:10.1002/app.1992.070450716
  • Nam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering, 42(6), 1648-1656. doi:https://doi.org/10.1016/j.compositesb.2011.04.001
  • Narendar, R., & Priya Dasan, K. (2014). Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Composites Part B: Engineering, 56, 770-779. doi:https://doi.org/10.1016/j.compositesb.2013.09.028
  • Özdemir, E. (2014). Organik Olarak Modifiye Edilmiş Montmorillonitlerin Poli(Laktik Asit)'İn Termal Bozunum Davranışı ve Mekanik Özellikleri Üzerindeki Etkisi. (Yüksek Lisans Tezi), Orta Doğu Teknik Üniversitesi, Ankara.
  • Shih, Y.-F., Cai, J.-X., Kuan, C.-S., & Hsieh, C.-F. (2012). Plant fibers and wasted fiber/epoxy green composites. Composites Part B: Engineering, 43(7), 2817-2821. doi:https://doi.org/10.1016/j.compositesb.2012.04.044
  • Sreekala, M. S., Kumaran, M. G., & Joseph, S. (2000). Oil Palm Fibre Reinforced Phenol Formaldehyde Composites: Influence of Fibre Surface Modifications on the Mechanical Performance. Applied Composite Materials, 7, 295. doi:https://doi.org/10.1023/A:1026534006291
  • Suksabye, P., & Thiravetyan, P. (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. Journal of Environmental Management, 102, 1-8. doi:https://doi.org/10.1016/j.jenvman.2011.10.020
  • Y. Liu, X. (2007). Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites (Vol. 1).

Preparation and characterization of natural waste reinforced epoxy resin matrix composites modified with different chemicals

Year 2019, Volume: 11 Issue: 1, 77 - 86, 31.01.2019
https://doi.org/10.29137/umagd.459758

Abstract

In this
study apricot kernel shell (AKS), which is a natural waste product, was used as
raw material for the preparation of bisphenol-A type epoxy composite materials.
In addition, the natural reinforcement material is modified with several
different chemicals to target the preparation of superior-quality composites.
For this purpose, high-renewable materials were obtained by using modified
environmental-friendly filling material combined with epoxy resin matrix. The
structure of the modified natural fruit core waste is illuminated by FTIR,
particle size was determined. The effect of filler ratio on the mechanical
properties of the composites was investigated and the structure of the
composites was characterized by scanning electron microscopy (SEM), X-ray
powder diffraction (XRD) and thermal gravimetric analysis (TGA).
The effect of the
filler ratio on the mechanical and thermal properties of composites has been
investigated.

References

  • Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering, 47, 35-41. doi:https://doi.org/10.1016/j.compositesb.2012.10.046
  • Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90, 589-597. doi:https://doi.org/10.1016/j.compositesa.2016.08.025
  • Fraga, F., Vázquez, I., Rodríguez-Núñez, E., Martínez-Ageitos, J. M., & Miragaya, J. (2009). Influence of the filler CaCO3 on the cure kinetic of the epoxy network diglycidyl ether of bisphenol a (BADGE n = 0) with isophorone diamine. Journal of Applied Polymer Science, 114(5), 3338-3342. doi:doi:10.1002/app.30253
  • Ho, M.-p., Wang, H., Lee, J.-H., Ho, C.-k., Lau, K.-t., Leng, J., & Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8), 3549-3562. doi:https://doi.org/10.1016/j.compositesb.2011.10.001
  • Jeyranpour, F., Alahyarizadeh, G., & Arab, B. (2015). Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 62, 157-164. doi:https://doi.org/10.1016/j.jmgm.2015.09.012
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:https://doi.org/10.1016/j.compositesb.2012.04.053
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2013). Tensile properties of chemically treated hemp fibres as reinforcement for composites. Composites Part B: Engineering, 53, 362-368. doi:https://doi.org/10.1016/j.compositesb.2013.05.048
  • Kocaman, S., Karaman, M., Gursoy, M., & Ahmetli, G. (2017). Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydrate Polymers, 159, 48-57. doi:https://doi.org/10.1016/j.carbpol.2016.12.016
  • Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 15(1), 25-33. doi:https://doi.org/10.1007/s10924-006-0042-3
  • Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z., & Zhou, Z. (2013). Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites Part B: Engineering, 51, 28-34. doi:https://doi.org/10.1016/j.compositesb.2013.02.031
  • Melo, J. D. D., Carvalho, L. F. M., Medeiros, A. M., Souto, C. R. O., & Paskocimas, C. A. (2012). A biodegradable composite material based on polyhydroxybutyrate (PHB) and carnauba fibers. Composites Part B: Engineering, 43(7), 2827-2835. doi:https://doi.org/10.1016/j.compositesb.2012.04.046
  • Mishra, S., Tripathy, S. S., Misra, M., Mohanty, A. K., & Nayak, S. K. (2002). Novel Eco-Friendly Biocomposites: Biofiber Reinforced Biodegradable Polyester Amide Composites—Fabrication and Properties Evaluation. Journal of Reinforced Plastics and Composites, 21(1), 55-70. doi:https://doi.org/10.1106%2F073168402024282
  • Mustata, F., Tudorachi, N., & Rosu, D. (2012). Thermal behavior of some organic/inorganic composites based on epoxy resin and calcium carbonate obtained from conch shell of Rapana thomasiana. Composites Part B: Engineering, 43(2), 702-710. doi:https://doi.org/10.1016/j.compositesb.2011.11.047
  • Nakamura, Y., Yamaguchi, M., Okubo, M., & Matsumoto, T. (1992). Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica. Journal of Applied Polymer Science, 45(7), 1281-1289. doi:doi:10.1002/app.1992.070450716
  • Nam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering, 42(6), 1648-1656. doi:https://doi.org/10.1016/j.compositesb.2011.04.001
  • Narendar, R., & Priya Dasan, K. (2014). Chemical treatments of coir pith: Morphology, chemical composition, thermal and water retention behavior. Composites Part B: Engineering, 56, 770-779. doi:https://doi.org/10.1016/j.compositesb.2013.09.028
  • Özdemir, E. (2014). Organik Olarak Modifiye Edilmiş Montmorillonitlerin Poli(Laktik Asit)'İn Termal Bozunum Davranışı ve Mekanik Özellikleri Üzerindeki Etkisi. (Yüksek Lisans Tezi), Orta Doğu Teknik Üniversitesi, Ankara.
  • Shih, Y.-F., Cai, J.-X., Kuan, C.-S., & Hsieh, C.-F. (2012). Plant fibers and wasted fiber/epoxy green composites. Composites Part B: Engineering, 43(7), 2817-2821. doi:https://doi.org/10.1016/j.compositesb.2012.04.044
  • Sreekala, M. S., Kumaran, M. G., & Joseph, S. (2000). Oil Palm Fibre Reinforced Phenol Formaldehyde Composites: Influence of Fibre Surface Modifications on the Mechanical Performance. Applied Composite Materials, 7, 295. doi:https://doi.org/10.1023/A:1026534006291
  • Suksabye, P., & Thiravetyan, P. (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. Journal of Environmental Management, 102, 1-8. doi:https://doi.org/10.1016/j.jenvman.2011.10.020
  • Y. Liu, X. (2007). Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites (Vol. 1).
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Süheyla Kocaman

Publication Date January 31, 2019
Submission Date September 13, 2018
Published in Issue Year 2019 Volume: 11 Issue: 1

Cite

APA Kocaman, S. (2019). Farklı Kimyasallarla Modifiye Edilen Doğal Atık Takviyeli Epoksi Reçine Matrisli Kompozitlerin Hazırlanması ve Karakterizasyonu. International Journal of Engineering Research and Development, 11(1), 77-86. https://doi.org/10.29137/umagd.459758

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.