Research Article
BibTex RIS Cite

Yatay Sıcak Su Tanklarında Tank İçerisine Eğik Konumlandırılmış Engel Yerleştirmenin Etkisinin Sayısal Olarak İncelenmesi

Year 2018, Volume: 10 Issue: 3, 40 - 51, 31.12.2018
https://doi.org/10.29137/umagd.480410

Abstract

Güneş enerjili sıcak su sistemlerinde yatay sıcak su tanklarının kullanımı vakum tüplü güneş kolektörlerinin kullanımının artması ve daha estetik bir görünüm sağlamasından dolayı yaygınlaşmaktadır. Artan kullanımına karşın yatay sıcak su tankları ile alakalı literatürde kısıtlı sayıda çalışma bulunmaktadır. Bu çalışmada, bir yatay mantolu sıcak su tankının ısıl performansını arttırmak için tank içerisine eğik konumlandırılmış engel yerleştirmenin etkisi sayısal olarak araştırılmıştır. Engeller şebeke girişinden m=50, 100 ve 150 mm mesafelerde ve yatayla a=60º, 75º ve 90º açı yapacak şekilde yerleştirilmiştir. Böylece engel eğiminin ve konumunun etkisi sayısal olarak incelenmiştir. Sonuçlar; tank içerisindeki sıcaklık dağılımı, manto çıkış ve kullanım suyu sıcaklıkları, ortalama Yatay sıcak su tankıdepolanan su sıcaklığı, enerji ve ekserji verimleri üzerinden verilmiştir. Çalışmanın sonucunda, engel yerleştirilen her durumun, içerisinde engel olmayan duruma göre daha yüksek ısıl performansa sahip olduğu görülmüştür. Termodinamik açısından en iyi durum a=60º ve m=100 mm olduğu durumda elde edilmiştir. Aynı durumda depolama sıcaklığı 35ºC olup, engelsiz tanka göre yaklaşık 4ºC daha yüksektir. Yine aynı durumda manto çıkış sıcaklığı engelsiz tanka göre daha düşük, şebeke çıkış sıcaklığı ise daha yüksektir. Sonuç olarak; tank içerisinde eğik konumlandırılmış engel yerleştirme, içerisinde engel bulunmayan ve dik engel bulunan duruma göre daha yüksek ısıl performans sağlamıştır.

References

  • Acar, C. (2018). A comprehensive evaluation of energy storage options for better sustainability. International Journal of Energy Research, 1-15. Available online. 2018.Doi:10.1002/er.4102.
  • Alizadeh, S. (1999). An experimental and numerical study of thermal stratification in a horizontal cylindrical solar storage tank. Solar Energy, 66 (6), 409-421.
  • Andres A.C., Lopez M.C. (2002). TRNSYS model of a thermosiphon solar domestic water heater with a horizontal storage and mantle heat exchanger. Solar Energy. 72 (2). 89-98.
  • Atmane, M.A., Chan, V.S.S., Murray, D.B. (2003). Natural convection around a horizontal heated cylinder: The effects of vertical confinement. International Journal of Heat and Mass Transfer. 46(19). 3661-3672.
  • Erdemir, D., Altuntop N. (2018). Experimental Investigation on the effect of placing obstacle on flow direction on thermal performance in horizontal mantled hot water tanks, Proc. of 4th Anatolian Energy Symposium, Edirne, Turkey, 1993-2002.
  • Erdemir, D. (2018). Numerical Investigation on The Effect of Ratio of Tank Diameter to Tank Length on The Thermal Performance of Horizontal Mantled Hot Water Tank, Heat Transfer Research, Accepted paper, DOI: 10.1615/HeatTransRes.2018026953.
  • Fertahi, S., Bouhal, T., Kousksou, T., Jamil, A., Benbassou, A. (2018). Experimental study and CFD thermal assessment of horizontal hot water storage tank integrating Evacuated Tube Collectors with heat pipes. Solar Energy. (170). 234-251.
  • Helwa, N.H., Mobarak A.M., ESallak M.S., EGhetany H.H. (1995). Effect of hot-water consumption on temperature distribution in a horizontal solar water storage tank. Applied Energy. (52). 185-197.
  • Jannatabadi, M. (2012). An experimental study of hot water consumption on the thermal performance of a horizontal mantle tank. World Applied Sciences Journal. 19 (9). 1332-1326.
  • Jannatabadi, M., Taherian, H. (2012). An experimental study of influence of hot water consumption rate on the thermal stratification inside a horizontal mantle storage tank. 48. 1103-1112.
  • Kalogirou, S.A., Papamarcou, C. (2000). Modelling of a thermosyphon solar water heating system and simple model validation. Renewable Energy. 21(3). 471-493.
  • Khalifa A.N., Mehdi, M.M. (1999). On the verification of one dimensional heat flow in a horizontal thermosyphon storage tank. Energy Conversion and Management. (40). 961-974.
  • Liu, W., Davidson, J.H., Kulacki, F.A., Mantell, S.C. (2002). Natural Convection from a Horizontal Tube Heat Exchanger Immersed in a Tilted Enclosure, Journal of Solar Energy Engineering. 125(1). 65-74.
  • Madhlopa, A., Mgawi, R., Taulo, J. (2005). Experimental study of temperature stratification in an integrated collector -storage solar water heater with two horizontal tanks. 80. 989-1002.
  • Morrison G.L., Nasr, A., Behnia, M., Rosengarthen, G.(1998). Analysis of horizontal mantle heat exchangers in solar water heating systems. Solar Energy. 64. 19-31.
  • Morrison, G.L., Rosengarthen, G., Behnia, M. (1999). Mantle heat exchangers for horizontal tank thermosyphon solar water heaters. Solar Energy. 67. 53-64.
  • Rosengarten, G., Behnia, M., Morrison, G. (1999). Some aspects concerning modelling the flow and heat transfer in horizontal mantle heat exchangers in solar water heaters”, International Journal of Energy Research. 23. 1007-1016.
  • Rosengarten, G., Morrison, G.L., Behnia, M. (2001). Mixed convection in a narrow rectangular cavity with bottom inlet and outlet. Heat and Fluid Flow. 22. 168-179.
  • Tripanagnostopoulos, Y., Souliotis, M. (2004). ICS solar systems with horizontal (E–W) and vertical (N–S) cylindrical water storage tank, Renewable Energy. 29(1). 73-96.
  • Tripanagnostopoulos, Y., Souliotis, M. (2004). ICS solar systems with horizontal cylindrical storage tank and reflector of CPC or involute geometry. Renewable Energy. 29(1). 13-38, 2004.
  • Young, M.F., Baughn, J.W. (1981). An investigation of thermal stratification in horizontal storage tanks. 103. 286-290.
  • Zerrouki, A., Boumédien A., Bouhadef, K. (2002). The natural circulation solar water heater model with linear temperature distribution. Renewable Energy. 26(4). 549-559.

Numerical Investigation of the Effect of Placing Sloped Obstacle in the Horizontal Hot Water Tanks

Year 2018, Volume: 10 Issue: 3, 40 - 51, 31.12.2018
https://doi.org/10.29137/umagd.480410

Abstract

The use of horizontal hot water tanks in solar hot water systems is becoming widespread due to the increased use of vacuum tube solar collectors and providing a more aesthetic appearance. Despite the increasing use of it, there are a limited number of studies in the literature regarding horizontal hot water tanks. In this study, the effect of placing sloped obstacle in the tank to increase the thermal performance of a horizontal mantle hot water tank was investigated numerically. The obstacle has been located at a distance of m = 50, 100 and 150 mm from the mains input and at an angle of a = 60º, 75º and 90º. Thus, the effect of the slope angle and position has been investigated numerically. Results have been evaluated based on temperature distribution within the tank, mantle outlet and main outlet temperatures, average temperature of stored water, energy and exergy efficiencies. As a result of the study, every situation where the obstacle is placed in the tank has a higher thermal performance than the ordinary tank. The best condition in terms of thermodynamics is seen in case of a = 60º and m = 100 mm. In the same case, the storage temperature is 35ºC and is approximately 5ºC higher than the ordinary tank. In the same case, the mantle outlet temperature is lower than the ordinary tank and the outlet temperature is higher. As a result; The sloped obstacle placement in the tank provides higher thermal performance than the obstacle in which there is no obstacle and the vertical obstacle.

References

  • Acar, C. (2018). A comprehensive evaluation of energy storage options for better sustainability. International Journal of Energy Research, 1-15. Available online. 2018.Doi:10.1002/er.4102.
  • Alizadeh, S. (1999). An experimental and numerical study of thermal stratification in a horizontal cylindrical solar storage tank. Solar Energy, 66 (6), 409-421.
  • Andres A.C., Lopez M.C. (2002). TRNSYS model of a thermosiphon solar domestic water heater with a horizontal storage and mantle heat exchanger. Solar Energy. 72 (2). 89-98.
  • Atmane, M.A., Chan, V.S.S., Murray, D.B. (2003). Natural convection around a horizontal heated cylinder: The effects of vertical confinement. International Journal of Heat and Mass Transfer. 46(19). 3661-3672.
  • Erdemir, D., Altuntop N. (2018). Experimental Investigation on the effect of placing obstacle on flow direction on thermal performance in horizontal mantled hot water tanks, Proc. of 4th Anatolian Energy Symposium, Edirne, Turkey, 1993-2002.
  • Erdemir, D. (2018). Numerical Investigation on The Effect of Ratio of Tank Diameter to Tank Length on The Thermal Performance of Horizontal Mantled Hot Water Tank, Heat Transfer Research, Accepted paper, DOI: 10.1615/HeatTransRes.2018026953.
  • Fertahi, S., Bouhal, T., Kousksou, T., Jamil, A., Benbassou, A. (2018). Experimental study and CFD thermal assessment of horizontal hot water storage tank integrating Evacuated Tube Collectors with heat pipes. Solar Energy. (170). 234-251.
  • Helwa, N.H., Mobarak A.M., ESallak M.S., EGhetany H.H. (1995). Effect of hot-water consumption on temperature distribution in a horizontal solar water storage tank. Applied Energy. (52). 185-197.
  • Jannatabadi, M. (2012). An experimental study of hot water consumption on the thermal performance of a horizontal mantle tank. World Applied Sciences Journal. 19 (9). 1332-1326.
  • Jannatabadi, M., Taherian, H. (2012). An experimental study of influence of hot water consumption rate on the thermal stratification inside a horizontal mantle storage tank. 48. 1103-1112.
  • Kalogirou, S.A., Papamarcou, C. (2000). Modelling of a thermosyphon solar water heating system and simple model validation. Renewable Energy. 21(3). 471-493.
  • Khalifa A.N., Mehdi, M.M. (1999). On the verification of one dimensional heat flow in a horizontal thermosyphon storage tank. Energy Conversion and Management. (40). 961-974.
  • Liu, W., Davidson, J.H., Kulacki, F.A., Mantell, S.C. (2002). Natural Convection from a Horizontal Tube Heat Exchanger Immersed in a Tilted Enclosure, Journal of Solar Energy Engineering. 125(1). 65-74.
  • Madhlopa, A., Mgawi, R., Taulo, J. (2005). Experimental study of temperature stratification in an integrated collector -storage solar water heater with two horizontal tanks. 80. 989-1002.
  • Morrison G.L., Nasr, A., Behnia, M., Rosengarthen, G.(1998). Analysis of horizontal mantle heat exchangers in solar water heating systems. Solar Energy. 64. 19-31.
  • Morrison, G.L., Rosengarthen, G., Behnia, M. (1999). Mantle heat exchangers for horizontal tank thermosyphon solar water heaters. Solar Energy. 67. 53-64.
  • Rosengarten, G., Behnia, M., Morrison, G. (1999). Some aspects concerning modelling the flow and heat transfer in horizontal mantle heat exchangers in solar water heaters”, International Journal of Energy Research. 23. 1007-1016.
  • Rosengarten, G., Morrison, G.L., Behnia, M. (2001). Mixed convection in a narrow rectangular cavity with bottom inlet and outlet. Heat and Fluid Flow. 22. 168-179.
  • Tripanagnostopoulos, Y., Souliotis, M. (2004). ICS solar systems with horizontal (E–W) and vertical (N–S) cylindrical water storage tank, Renewable Energy. 29(1). 73-96.
  • Tripanagnostopoulos, Y., Souliotis, M. (2004). ICS solar systems with horizontal cylindrical storage tank and reflector of CPC or involute geometry. Renewable Energy. 29(1). 13-38, 2004.
  • Young, M.F., Baughn, J.W. (1981). An investigation of thermal stratification in horizontal storage tanks. 103. 286-290.
  • Zerrouki, A., Boumédien A., Bouhadef, K. (2002). The natural circulation solar water heater model with linear temperature distribution. Renewable Energy. 26(4). 549-559.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Doğan Erdemir 0000-0002-7995-4629

Buket Turgut

Necdet Altuntop

Publication Date December 31, 2018
Submission Date November 8, 2018
Published in Issue Year 2018 Volume: 10 Issue: 3

Cite

APA Erdemir, D., Turgut, B., & Altuntop, N. (2018). Yatay Sıcak Su Tanklarında Tank İçerisine Eğik Konumlandırılmış Engel Yerleştirmenin Etkisinin Sayısal Olarak İncelenmesi. International Journal of Engineering Research and Development, 10(3), 40-51. https://doi.org/10.29137/umagd.480410

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.