Regenerative Cooling Analysis of Rocket Engine Operated by Liquid Hydrogen and Liquid Oxygen
Year 2021,
Volume: 13 Issue: 3, 26 - 31, 31.12.2021
Safa Korkmaz
,
Hayri Yaman
Abstract
Liquid fueled rocket engines have to be cooled due to their long-term operation at high combustion temperatures. Cooling system design is one of the most important issues in liquid fueled rocket engines since rocket engines are exposed to 2500-3500 K temperature during operation and this temperature range is above the melting temperature of most metals. Different cooling techniques are applied for the safe and stable operation of liquid fueled rocket engines. Generally, regenerative cooling method is used in liquid fueled rockets. In this study, the regenerative coaxial cooling system was designed for rocket engine which produces 100 kN thrust with liquid oxygen and liquid hydrogen. The parts of the rocket exposed to high temperatures were coated with zirconium oxide (ZrO2). Numerical analysis of rocket was carried out through the RPA program by dividing into seven zones. It was observed that liquid hydrogen entering the cooling channel at 23.75 MPa pressure and 45 K temperature provides stable cooling conditions with the output of 23.095 MPa and 141.21 K temperature.
References
- Dhara, A., Kishan, P. M. ve Kannah, V. V. (2020). Design of Regenerative Cooled Cryogenic Rocket Engine.
- Huang, D. H. ve Huzel, D. K. (1971). Design of Liquid Propellant Rocket Engines Second Edition.
- Kim, S.-K., Joh, M., Choi, H. S. ve Park, T. S. (2014). Multidisciplinary Simulation of a Regeneratively Cooled Thrust Chamber of Liquid Rocket Engine: Turbulent Combustion and Nozzle Flow. International Journal of Heat and Mass Transfer, 70, 1066–1077.
- Munk, D. J., Selzer, M., Seiler, H., Ortelt, M. ve Vio, G. A. (2022). Analysis of a transpiration cooled LOX/CH4 rocket thrust chamber. International Journal of Heat and Mass Transfer, 182, 121986.
- Ponomarenko, A. (2009). RPA: Design tool for liquid rocket engine analysis.
- Ponomarenko, A. (2012). Thermal analysis of thrust chambers. Software Manual, RPA: Tool for Rocket Propulsion Analysis.
- Sichler, E., Montes, J. D. ve Chandler, F. O. (2018). One Dimensional Thermal Steady State Analysis and Procedure for a Low-Pressure Liquid Oxygen and Liquid Methane Rocket Engine. 2018 Joint Propulsion Conference içinde (s. 4602).
- Song, J. ve Sun, B. (2016). Coupled Numerical Simulation of Combustion and Regenerative Cooling in LOX/Methane Rocket Engines. Applied Thermal Engineering, 106, 762–773.
- Sutton, G. P. ve Biblarz, O. (2016). Rocket propulsion elements. John Wiley & Sons.
- Turner, M. J. L. (2006). Rocket and Spacecraft Propulsion (2. bs.). Springer-Verlag Berlin Heidelberg.
- Ulas, A. ve Boysan, E. (2013). Numerical analysis of regenerative cooling in liquid propellant rocket engines. Aerospace Science and Technology, 24(1), 187–197.
- Ward, T. A. (2010). Aerospace propulsion systems. John Wiley & Sons.
Sıvı Hidrojen ve Sıvı Oksijen ile Çalışan bir Roket Motorunun Rejeneratif Soğutma Analizi
Year 2021,
Volume: 13 Issue: 3, 26 - 31, 31.12.2021
Safa Korkmaz
,
Hayri Yaman
Abstract
Sıvı yakıtlı roket motorları yüksek yanma sıcaklıklarında uzun süre çalışmaları nedeniyle soğutulmaları gerekmektedir. Sıvı yakıtlı roket motorlarında soğutma sistem tasarımı en önemli konuların başında gelmektedir. Çünkü roket motorları çalışma esnasında 2500-3500 K sıcaklığa maruz kalmakta ve bu sıcaklık aralığı çoğu metalin ergime sıcaklığının üzerindedir. Sıvı yakıtlı roket motorlarının kararlı ve güvenli bir yapıda çalışması için farklı soğutma teknikleri uygulanmaktadır. Genellikle sıvı yakıtlı roketlerde rejeneratif soğutma yöntemi kullanılmaktadır. Bu çalışmada 100 kN itki üreten bir sıvı oksijen ve sıvı hidrojen ile çalışan roket motorunun rejeneratif eş eksen soğutma sistemi ve roketin yüksek sıcaklığa maruz kalan kısımları zirkonya (ZrO2) kaplamalı tasarımı yapılmıştır. Tasarımı yapılan roket yedi bölgeye ayrılmış ve soğutma analizi RPA programı aracılığı ile nümerik olarak yapılmıştır. Soğutma kanalına 23.75 MPa basınçta ve 45 K sıcaklıkta giren sıvı hidrojenin 23.095 MPa ve 141.21 K sıcaklıkta kanaldan çıkması ile karalı soğutma koşulunun sağladığı görülmüştür.
References
- Dhara, A., Kishan, P. M. ve Kannah, V. V. (2020). Design of Regenerative Cooled Cryogenic Rocket Engine.
- Huang, D. H. ve Huzel, D. K. (1971). Design of Liquid Propellant Rocket Engines Second Edition.
- Kim, S.-K., Joh, M., Choi, H. S. ve Park, T. S. (2014). Multidisciplinary Simulation of a Regeneratively Cooled Thrust Chamber of Liquid Rocket Engine: Turbulent Combustion and Nozzle Flow. International Journal of Heat and Mass Transfer, 70, 1066–1077.
- Munk, D. J., Selzer, M., Seiler, H., Ortelt, M. ve Vio, G. A. (2022). Analysis of a transpiration cooled LOX/CH4 rocket thrust chamber. International Journal of Heat and Mass Transfer, 182, 121986.
- Ponomarenko, A. (2009). RPA: Design tool for liquid rocket engine analysis.
- Ponomarenko, A. (2012). Thermal analysis of thrust chambers. Software Manual, RPA: Tool for Rocket Propulsion Analysis.
- Sichler, E., Montes, J. D. ve Chandler, F. O. (2018). One Dimensional Thermal Steady State Analysis and Procedure for a Low-Pressure Liquid Oxygen and Liquid Methane Rocket Engine. 2018 Joint Propulsion Conference içinde (s. 4602).
- Song, J. ve Sun, B. (2016). Coupled Numerical Simulation of Combustion and Regenerative Cooling in LOX/Methane Rocket Engines. Applied Thermal Engineering, 106, 762–773.
- Sutton, G. P. ve Biblarz, O. (2016). Rocket propulsion elements. John Wiley & Sons.
- Turner, M. J. L. (2006). Rocket and Spacecraft Propulsion (2. bs.). Springer-Verlag Berlin Heidelberg.
- Ulas, A. ve Boysan, E. (2013). Numerical analysis of regenerative cooling in liquid propellant rocket engines. Aerospace Science and Technology, 24(1), 187–197.
- Ward, T. A. (2010). Aerospace propulsion systems. John Wiley & Sons.