Investigation of Tool Wear Behaviors in The Machining of Al 6061/B4C/GNP Hybrid Composite
Year 2022,
Volume: 14 Issue: 2, 816 - 828, 31.07.2022
Selçuk Yağmur
,
Muharrem Pul
Abstract
In this study, the wear behavior of the used cutting tools was investigated by performing lathe machining experiments of the hybrid composite material reinforced with borcarbide (B4C) and graphene nanoplate (GNP) in different proportions into the Al 6061 alloy. It was aimed to determine the effect of B4C and GNP additives on tool wear. In the first stage of the experimental study, hybrid composite materials with different B4C and GNP reinforcement ratios were produced by vortex method. Machining experiments were carried out on the produced composite specimens in dry machining conditions, at constant cutting depth, using three different cutting speeds and feed rates. The wear behavior of the cutting tools used in machining experiments was evaluated by taking digital microscope images. Due to the increase in the B4C reinforcement ratio in the hybrid composite structure, significant increases in tool wear were observed in all cutting parameters. It has been understood that the GNP additive in the composite structure facilitates the machinability somewhat, graphene exhibits solid lubricant properties and reduces tool wear
References
- Anthony, X. M., & Ajith Kumar J. P. (2017). Machinability of Hybrid Metal Matrix Composite -A Review. Procedia Engineering,
174, 1110–1118. doi:10.1016/j.proeng.2017.01.264
- Mannaa, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology, 140(1-3), 711–716. doi:10.1016/S0924-0136(03)00905-1
- Ajithkumar, J. P., & Anthony Xavior, M. (2019). Flank and crater wear analysis during turning of Al 7075 based hybrid composites, Mater. Res. Express, 6(8), 086560. doi:10.1088/2053-1591/ab196e
- Davima, J. P., Silva, J., & Baptista, A.M. (2007). Experimental cutting model of metal matrix composites (MMCs), J. Mater. Process. Technol., 183(2-3), 358–362. doi:10.1016/j.jmatprotec.2006.10.025
- Ding, X., Liew, W.Y.H.,& Liu, X.D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools, Wear, 259(7-12), 1225–1234. doi:10.1016/j.wear.2005.02.094
- Gökkaya H., & Nalbant, M. (2007). Investigating the effects of cutting speeds over the built-up layer and built-up edge formation with SEM. J. Fac. Eng. Arch. Gazi. Univ., 22(3), 481-488.
- Hameed Najem, S. (2013). Machinability of Al-2024 reinforced with Al2O3 and/or B4C. University of Babylon Journal, 21, 84-96.
- Na, H.B., Xu, L.H., Han, G.C., Liu, S.K., Lu, L.H. (2019). Machinability Research on the Micro-Milling for Graphene Nano-Flakes Reinforced Aluminum Alloy. Metals, 9, 1102. doi:10.3390/met9101102
- Kannan, S., & Kishawy, H.A. (2008). Tribological aspects of machining aluminium metal matrix composites. Journal of Material Processing Technology, 198(1-3), 399-406. doi:10.1016/j.jmatprotec.2007.07.021
- Kannan, S., & Kishawy, H.A. (2006). On the role of reinforcements on tool performance during cutting of metal matrix composites. J. Manuf. Processes., 8(2), 67–75. doi.org/10.1016/S1526-6125(07)00006-0
- Kılıçkap, E., Çakır, O., Aksoy, M., & İnan, A. (2005). Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. Journal of Materials Processing Technology, 164-165, 862-867. doi:10.1016/j.jmatprotec.2005.02.109
- Lin, J.T., Bhattacharyya, D., & Kecman, V. (2003). Multiple regression and neural Networks analyses in composites machining. Composites Scienceand Technology, 63(3-4), 539-548. doi:10.1016/S0266-3538(02)00232-4
- Lin J.T., Bhattacharyya, D., Fergusod, W.G. (1998). Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites. Compos. Sci. Technol., 58(2), 285-291. doi:10.1016/S0266-3538(97)00126-7
- Tabandeh-Khorshid, M., Omrani, E., Menezes, P.L., & Rohatgi, P.K. (2016). Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Engineering Science and Technology, an International Journal, 19(1), 463-469. doi:10.1016/j.jestch.2015.09.005
- Montoya-Dávila, M., Pech-Canul, M.A., & Pech-Canul, M.I. (2007). Effect of bi-and trimodal Size Distribution on the Superficial Hardness of Al/SiCp Composites Prepared by Pressureless Infiltration. PowderTechnology, 176(2-3), 66-71. doi:10.1016/j.powtec.2007.02.008
- Özçatalbas, Y. (2003). Investigation of themachinability behaviour of Al4C3 reinforced Al-based composite produced bymechanical alloying technique. Composites Science and Technology, 63(1), 53-61. doi:10.1016/S0266-3538(02)00177-X
- Özcatalbaş, Y. (2003). Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Materials & Design, 24(3), 215–221. doi:10.1016/S0261-3069(02)00146-2
- Pedersen, W., & Ramulu, M. (2006). Facing SiCp/Mg metal matrix composites with carbide tools. Journal of Materials Processing Technology, 172(39, 417-423. doi:10.1016/j.jmatprotec.2005.07.016
- Sur, G., Şahin, Y., & Gökkaya, H. (2005). Ergimiş Metal Karıştırma ve Basınçlı DökümYöntemi ile Alüminyum Esaslı Tanecik Takviyeli Kompozitlerin Üretimi, Gazi Üniv. Müh. Mim. Fak. Der., 20(2), 233-238.
- Verma, N., Vettivel, S.C., Rao, P.S., & Zafar, S. (2019). Processing tool wear measurement using machine vision system and optimization of machining parameters of boron carbide and rice husk ash reinforced AA 7075 hybrid composite. Mater. Res. Express, 6(8), 0865f3. doi:10.1088/2053-1591/ab2509
- Zhang, H. (2000). Plastic Deformation and chip Formation Mechanics during Machining of Copper, Aluminium and an Aluminium Matrix Composite, PhD. Thesis, University of Windsor, Canada.
Al 6061/B4C/GNP Hibrit Kompozitin İşlenmesinde Takım Aşınma Davranışlarının İncelenmesi
Year 2022,
Volume: 14 Issue: 2, 816 - 828, 31.07.2022
Selçuk Yağmur
,
Muharrem Pul
Abstract
Bu çalışmada Al 6061 alaşımı içerisine farklı oranlarda borkarbür (B4C) ve grafen nanoplaka (GNP) takviye edilen hibrit kompozit malzemenin tornada işleme deneyleri yapılarak kullanılan kesici takımların aşınma davranışları incelenmiştir. B4C ve GNP katkısının takım aşınması üzerindeki etkisinin belirlenmesi amaçlanmıştır. Deneysel çalışmanın ilk aşamasında vortex yöntemiyle farklı B4C ve GNP takviye oranlarında hibrit kompozit malzemeler üretilmiştir. Üretilen kompozit numuneler üzerinde kuru işleme koşullarında, sabit kesme derinliğinde, üç farklı kesme hızı ve ilerleme değeri kullanılarak CNC tornada işleme deneyleri gerçekleştirilmiştir. İşleme deneylerinde kullanılan kesici takımların dijital mikroskop görüntüleri çekilerek aşınma davranışları değerlendirilmiştir. Hibrit kompozit yapı içerisindeki B4C takviye oranının artışına bağlı olarak, tüm kesme parametrelerinde takım aşınmalarında önemli miktarlarda artışlar olduğu görülmüştür. Kompozit yapı içerisindeki GNP katkısının işlenebilirliği bir miktar kolaylaştırdığı, grafenin katı yağlayıcı özellik sergilediği ve takım aşınmalarını azaltıcı etki gösterdiği anlaşılmıştır.
References
- Anthony, X. M., & Ajith Kumar J. P. (2017). Machinability of Hybrid Metal Matrix Composite -A Review. Procedia Engineering,
174, 1110–1118. doi:10.1016/j.proeng.2017.01.264
- Mannaa, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology, 140(1-3), 711–716. doi:10.1016/S0924-0136(03)00905-1
- Ajithkumar, J. P., & Anthony Xavior, M. (2019). Flank and crater wear analysis during turning of Al 7075 based hybrid composites, Mater. Res. Express, 6(8), 086560. doi:10.1088/2053-1591/ab196e
- Davima, J. P., Silva, J., & Baptista, A.M. (2007). Experimental cutting model of metal matrix composites (MMCs), J. Mater. Process. Technol., 183(2-3), 358–362. doi:10.1016/j.jmatprotec.2006.10.025
- Ding, X., Liew, W.Y.H.,& Liu, X.D. (2005). Evaluation of machining performance of MMC with PCBN and PCD tools, Wear, 259(7-12), 1225–1234. doi:10.1016/j.wear.2005.02.094
- Gökkaya H., & Nalbant, M. (2007). Investigating the effects of cutting speeds over the built-up layer and built-up edge formation with SEM. J. Fac. Eng. Arch. Gazi. Univ., 22(3), 481-488.
- Hameed Najem, S. (2013). Machinability of Al-2024 reinforced with Al2O3 and/or B4C. University of Babylon Journal, 21, 84-96.
- Na, H.B., Xu, L.H., Han, G.C., Liu, S.K., Lu, L.H. (2019). Machinability Research on the Micro-Milling for Graphene Nano-Flakes Reinforced Aluminum Alloy. Metals, 9, 1102. doi:10.3390/met9101102
- Kannan, S., & Kishawy, H.A. (2008). Tribological aspects of machining aluminium metal matrix composites. Journal of Material Processing Technology, 198(1-3), 399-406. doi:10.1016/j.jmatprotec.2007.07.021
- Kannan, S., & Kishawy, H.A. (2006). On the role of reinforcements on tool performance during cutting of metal matrix composites. J. Manuf. Processes., 8(2), 67–75. doi.org/10.1016/S1526-6125(07)00006-0
- Kılıçkap, E., Çakır, O., Aksoy, M., & İnan, A. (2005). Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. Journal of Materials Processing Technology, 164-165, 862-867. doi:10.1016/j.jmatprotec.2005.02.109
- Lin, J.T., Bhattacharyya, D., & Kecman, V. (2003). Multiple regression and neural Networks analyses in composites machining. Composites Scienceand Technology, 63(3-4), 539-548. doi:10.1016/S0266-3538(02)00232-4
- Lin J.T., Bhattacharyya, D., Fergusod, W.G. (1998). Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites. Compos. Sci. Technol., 58(2), 285-291. doi:10.1016/S0266-3538(97)00126-7
- Tabandeh-Khorshid, M., Omrani, E., Menezes, P.L., & Rohatgi, P.K. (2016). Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Engineering Science and Technology, an International Journal, 19(1), 463-469. doi:10.1016/j.jestch.2015.09.005
- Montoya-Dávila, M., Pech-Canul, M.A., & Pech-Canul, M.I. (2007). Effect of bi-and trimodal Size Distribution on the Superficial Hardness of Al/SiCp Composites Prepared by Pressureless Infiltration. PowderTechnology, 176(2-3), 66-71. doi:10.1016/j.powtec.2007.02.008
- Özçatalbas, Y. (2003). Investigation of themachinability behaviour of Al4C3 reinforced Al-based composite produced bymechanical alloying technique. Composites Science and Technology, 63(1), 53-61. doi:10.1016/S0266-3538(02)00177-X
- Özcatalbaş, Y. (2003). Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Materials & Design, 24(3), 215–221. doi:10.1016/S0261-3069(02)00146-2
- Pedersen, W., & Ramulu, M. (2006). Facing SiCp/Mg metal matrix composites with carbide tools. Journal of Materials Processing Technology, 172(39, 417-423. doi:10.1016/j.jmatprotec.2005.07.016
- Sur, G., Şahin, Y., & Gökkaya, H. (2005). Ergimiş Metal Karıştırma ve Basınçlı DökümYöntemi ile Alüminyum Esaslı Tanecik Takviyeli Kompozitlerin Üretimi, Gazi Üniv. Müh. Mim. Fak. Der., 20(2), 233-238.
- Verma, N., Vettivel, S.C., Rao, P.S., & Zafar, S. (2019). Processing tool wear measurement using machine vision system and optimization of machining parameters of boron carbide and rice husk ash reinforced AA 7075 hybrid composite. Mater. Res. Express, 6(8), 0865f3. doi:10.1088/2053-1591/ab2509
- Zhang, H. (2000). Plastic Deformation and chip Formation Mechanics during Machining of Copper, Aluminium and an Aluminium Matrix Composite, PhD. Thesis, University of Windsor, Canada.