Research Article
BibTex RIS Cite

DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND

Year 2021, , 124 - 131, 30.12.2021
https://doi.org/10.47137/uujes.1037884

Abstract

Metamaterials, which are called as left-handed materials, exhibit electromagnetic properties that do not exist in nature, such as negative refractive index and reverse Doppler effect, at the frequency range for which they are designed. These unique properties of metamaterials have made them indispensable in a wide variety of applications such as sensor applications, signal absorption, antenna, and energy harvesting. In this study, the design and analysis of a metamaterial (MTM) perfect absorber at 5 GHz frequency band were performed to investigate the usability of the proposed structure in energy harvesting applications. The results of the study revealed that the proposed MTM structure has potentials to be used in energy harvesting applications.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Chilabi HJ, Salleh H, Al-Ashtari W, Supeni EE, Abdullah LC, As’arry AB, Rezali KAM, Azwan MK. Rotational piezoelectric energy harvesting: a comprehensive review on excitation elements, designs, and performances. Energies. 2021;14(11):3098.
  • Karakaya E, Bagci F, Yilmaz AE, Akaoglu B. Metamaterial-based four-band electromagnetic energy harvesting at commonly used GSM and Wi-Fi rfequencies. J. Electron. Mater. 2019;48:2307–2316.
  • Unal E, Dincer F, Tetik E, Karaaslan M, Bakir M, Sabah C. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci: Mater. Electron.2015;26:9735–9740.
  • Veselago VG. The Electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi. 1968.
  • Al-badri KSL. Ultrathin perfect metamaterial absorber based on triquetra shape. IOP Conf. Ser.: Mater. Sci. Eng. 2020;928,072065.
  • Bağmancı M, Karaaslan M, Ünal E, Akgol O, Sabah C. Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator. Opt. Quantum Electron. 2017;49:1–14.
  • Lee W, Choi SI, Kim HI, Hwang S, Jeon S, Yoon YK. Metamaterial-integrated high-gain rectenna for RF sensing and energy harvesting applications. Sensors (Basel). 2021;21(19):6580.
  • Bakir M, Karaaslan M, Altintas O, Bağmancı M, Akdogan V, Temurtas F. Tunable energy harvesting on UHF bands especially for GSM frequencies. Int. J. of Microw. Wirel. Technol. 2018;10(1):67-76.
  • Elwi TA, Jassim DA, Mohammed HH. Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting. Int. J. Commun. Syst. 2020;33:e4305.
  • Pandey R, Shnakhwar AK, Singh A. Design, analysis, and optimization of dual side printed multiband antenna for energy harvesting applications. Prog. Electromagn. Res. C. 2020;102:79-91.
  • Dincer F. Electromagnetic energy harvesting application based on tunable perfect metamaterial absorber. J. Electromagn. Waves Appl. 2015;29,18:2444-2453.
  • Das R, McGlynn E, Yuan M, Heidari H. Serpentine-shaped metamaterial energy harvester for wearable and implantable medical systems. 2021 IEEE Int. Symp. Circuits Syst. 2021;1-5.
  • Mulazimoglu C, Karakaya E, Can S, Yilmaz AE, Akaoglu B. Hexagonal-shaped metamaterial energy harvester design. 10th Int. Congr. Adv. Electromagn. Mater. Microw. Opt. 2016; 82-84.
  • Hossain MJ, Faruque MRI, Islam MT, Mat KB. A new compact octagonal shape perfect metamaterial absorber for microwave applications. Appl. Sci. 2017;7(12):1263.
  • Tetik E. Flexible perfect metamaterial absorber and sensor application at terahertz frequencies, J. Optoelectron. Adv. Mater. 2020;22(5-6):213-218.
  • Tetik E, Antepli A. The effect on the human body of a wearable circular antenna based on metamaterial. 5th Int. Conf. Mater. Sci. Adv. Nanotechnologies Nxt Gen. 2018.
  • Koski K, Vena A, Sydänheimo L, Ukkonen L, Rahmat-Samii Y. Design and implementation of electro-textile ground planes for wearable UHF RFID patch tag antennas. IEEE Antennas Wirel. Propag. Lett. 2013;12:964-967.
  • Kaur KP, Upadhyaya T, Palandoken M, Gocen C. Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. Int. J. RF Microw. Comput. Aided Eng. 2019;29:e21646.
  • Coskuner E, Garcia-Garcia JJ. Metamaterial impedance matching network for ambient RF-energy harvesting operating at 2.4 GHz and 5 GHz. Electronics. 2021;10(10):1196.
  • Aldhaeebi MA, Almoneef TS. Planar dual polarized metasurface array for microwave energy harvesting. Electronics. 2020;9(12):1985.
  • Costanzo S, Venneri F. Polarization-insensitive fractal metamaterial surface for energy harvesting in IoT applications. Electronics. 2020;9(6):959.
Year 2021, , 124 - 131, 30.12.2021
https://doi.org/10.47137/uujes.1037884

Abstract

Project Number

-

References

  • Chilabi HJ, Salleh H, Al-Ashtari W, Supeni EE, Abdullah LC, As’arry AB, Rezali KAM, Azwan MK. Rotational piezoelectric energy harvesting: a comprehensive review on excitation elements, designs, and performances. Energies. 2021;14(11):3098.
  • Karakaya E, Bagci F, Yilmaz AE, Akaoglu B. Metamaterial-based four-band electromagnetic energy harvesting at commonly used GSM and Wi-Fi rfequencies. J. Electron. Mater. 2019;48:2307–2316.
  • Unal E, Dincer F, Tetik E, Karaaslan M, Bakir M, Sabah C. Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. J. Mater. Sci: Mater. Electron.2015;26:9735–9740.
  • Veselago VG. The Electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi. 1968.
  • Al-badri KSL. Ultrathin perfect metamaterial absorber based on triquetra shape. IOP Conf. Ser.: Mater. Sci. Eng. 2020;928,072065.
  • Bağmancı M, Karaaslan M, Ünal E, Akgol O, Sabah C. Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator. Opt. Quantum Electron. 2017;49:1–14.
  • Lee W, Choi SI, Kim HI, Hwang S, Jeon S, Yoon YK. Metamaterial-integrated high-gain rectenna for RF sensing and energy harvesting applications. Sensors (Basel). 2021;21(19):6580.
  • Bakir M, Karaaslan M, Altintas O, Bağmancı M, Akdogan V, Temurtas F. Tunable energy harvesting on UHF bands especially for GSM frequencies. Int. J. of Microw. Wirel. Technol. 2018;10(1):67-76.
  • Elwi TA, Jassim DA, Mohammed HH. Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting. Int. J. Commun. Syst. 2020;33:e4305.
  • Pandey R, Shnakhwar AK, Singh A. Design, analysis, and optimization of dual side printed multiband antenna for energy harvesting applications. Prog. Electromagn. Res. C. 2020;102:79-91.
  • Dincer F. Electromagnetic energy harvesting application based on tunable perfect metamaterial absorber. J. Electromagn. Waves Appl. 2015;29,18:2444-2453.
  • Das R, McGlynn E, Yuan M, Heidari H. Serpentine-shaped metamaterial energy harvester for wearable and implantable medical systems. 2021 IEEE Int. Symp. Circuits Syst. 2021;1-5.
  • Mulazimoglu C, Karakaya E, Can S, Yilmaz AE, Akaoglu B. Hexagonal-shaped metamaterial energy harvester design. 10th Int. Congr. Adv. Electromagn. Mater. Microw. Opt. 2016; 82-84.
  • Hossain MJ, Faruque MRI, Islam MT, Mat KB. A new compact octagonal shape perfect metamaterial absorber for microwave applications. Appl. Sci. 2017;7(12):1263.
  • Tetik E. Flexible perfect metamaterial absorber and sensor application at terahertz frequencies, J. Optoelectron. Adv. Mater. 2020;22(5-6):213-218.
  • Tetik E, Antepli A. The effect on the human body of a wearable circular antenna based on metamaterial. 5th Int. Conf. Mater. Sci. Adv. Nanotechnologies Nxt Gen. 2018.
  • Koski K, Vena A, Sydänheimo L, Ukkonen L, Rahmat-Samii Y. Design and implementation of electro-textile ground planes for wearable UHF RFID patch tag antennas. IEEE Antennas Wirel. Propag. Lett. 2013;12:964-967.
  • Kaur KP, Upadhyaya T, Palandoken M, Gocen C. Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. Int. J. RF Microw. Comput. Aided Eng. 2019;29:e21646.
  • Coskuner E, Garcia-Garcia JJ. Metamaterial impedance matching network for ambient RF-energy harvesting operating at 2.4 GHz and 5 GHz. Electronics. 2021;10(10):1196.
  • Aldhaeebi MA, Almoneef TS. Planar dual polarized metasurface array for microwave energy harvesting. Electronics. 2020;9(12):1985.
  • Costanzo S, Venneri F. Polarization-insensitive fractal metamaterial surface for energy harvesting in IoT applications. Electronics. 2020;9(6):959.
There are 21 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Ercan 0000-0003-0721-7598

Gamze Tetik 0000-0002-5968-7244

Muharrem Karaaslan 0000-0003-0923-1959

Project Number -
Publication Date December 30, 2021
Submission Date December 17, 2021
Acceptance Date December 29, 2021
Published in Issue Year 2021

Cite

APA Ercan, M., Tetik, G., & Karaaslan, M. (2021). DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND. Usak University Journal of Engineering Sciences, 4(2), 124-131. https://doi.org/10.47137/uujes.1037884
AMA Ercan M, Tetik G, Karaaslan M. DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND. UUJES. December 2021;4(2):124-131. doi:10.47137/uujes.1037884
Chicago Ercan, Murat, Gamze Tetik, and Muharrem Karaaslan. “DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND”. Usak University Journal of Engineering Sciences 4, no. 2 (December 2021): 124-31. https://doi.org/10.47137/uujes.1037884.
EndNote Ercan M, Tetik G, Karaaslan M (December 1, 2021) DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND. Usak University Journal of Engineering Sciences 4 2 124–131.
IEEE M. Ercan, G. Tetik, and M. Karaaslan, “DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND”, UUJES, vol. 4, no. 2, pp. 124–131, 2021, doi: 10.47137/uujes.1037884.
ISNAD Ercan, Murat et al. “DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND”. Usak University Journal of Engineering Sciences 4/2 (December 2021), 124-131. https://doi.org/10.47137/uujes.1037884.
JAMA Ercan M, Tetik G, Karaaslan M. DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND. UUJES. 2021;4:124–131.
MLA Ercan, Murat et al. “DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND”. Usak University Journal of Engineering Sciences, vol. 4, no. 2, 2021, pp. 124-31, doi:10.47137/uujes.1037884.
Vancouver Ercan M, Tetik G, Karaaslan M. DESIGN AND SIMULATION ANALYSIS OF A TEXTILE BASED METAMATERIAL PERFECT ABSORBER FOR ENERGY HARVESTING APPLICATIONS AT WIFI BAND. UUJES. 2021;4(2):124-31.

An international scientific e-journal published by the University of Usak