Microbiological analysis of commercial calf milk replacer and antibiotic resistance in isolated Enterococcus spp.
Year 2023,
, 241 - 248, 15.12.2023
Ali Uslu
,
Mevlüt Atalay
,
Oguzhan Denizli
,
Aslı Sakmanoğlu
,
Zafer Sayın
Abstract
One of the reasons why calf milk replacer is preferred over unpasteurized bulk tank milk or waste milk with antibiotics on farms is that it prevents epidemic diseases and antibiotic resistance that may occur on the farm. In this study analyzed commercial calf milk replacer products (n = 12) obtained from dairy farms around Turkiye by microbiological culture and polymerase chain reaction (PCR). In order to evaluate the microbiological quality of calf milk replacer, total bacteria count, coliform E. coli and E. coli O157-H7, Salmonella spp., Staphylococcus spp., Streptococcus spp., Enterococcus spp. analyses were performed according to microbiological analysis methods determined according to ISO standards. Enterococcus spp. was isolated from all 12 calf milk replacer samples analyzed and molecularly confirmed by PCR with the presence of the gross-Es gene. Salmonella spp., E. coli, Staphylococcus spp. and Streptococcus spp. were not isolated from the samples.
Additionally, in the bacterial counts, an average of 5.3x107 Enterococci were counted from all samples in 1 gram of calf milk replacer. Antimicrobial analysis of the isolated bacteria was completed according to CLSI 2022 data, and 11 isolates were defined as multi drug resistance and one isolate was defined as extensive drug resistance. It was also determined that the isolate defined as extensive drug resistance was resistant to Vancomycin and carried the Van A resistance gene. Many proteins used in the preparation of calf milk replacers are of animal origin and may contain pathogenic bacteria. Milk replacers are used on most farms for biosecurity purposes. It is known that milk replacers affect microbiota. It was shown in this study that if calf milk replacers are not prepared under the regulations, they may cause harm rather than benefit to on-farm biosecurity factors. It is concerning that calves are given calf milk replacers containing antibiotic-resistant Enterococcus spp. to sustain their lives when they are most vulnerable to disease during the window of susceptibility. When using calf milk replacer in calf feeding, field veterinarians should be informed about the microbiological certification of the product and provide information about pasteurization and presentation for consumption.
Ethical Statement
Çalışma cansız materyal üzerinde mikrobiyolojik analizler ile gerçekleştiği için etik kurul başvurusunda bulunulmamıştır.
Supporting Institution
Çalışmayı desteklenen bir proje ile tamamlanmamıştır.
References
- Amin, N., & Seifert, J. (2021). Dynamic progression of the calf’s microbiome and its influence on host health. Computational and Structural Biotechnology Journal, 19, 989-1001. https://doi.org/10.1016/j.csbj.2021.01.035
- Aun, E., Kisand, V., Laht, M., Telling, K., Kalmus, P., Väli, Ü., & Tenson, T. (2021). Molecular characterization of Enterococcus isolates from different sources in Estonia reveals potential transmission of resistance genes among different reservoirs. Frontiers in Microbiology, 12, 601490. https://doi.org/10.3389/fmicb.2021.601490
- Aust, V., Knappstein, K., Kunz, H. J., Kaspar, H., Wallmann, J., & Kaske, M. (2013). Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria. Journal of Animal Physiology and Animal Nutrition, 97(6), 1091-1103. https://doi.org/10.1111/jpn.12019
- Badman, J., Daly, K., Kelly, J., Moran, A. W., Cameron, J., Watson, I., & Shirazi-Beechey, S. P. (2019). The effect of milk replacer composition on the intestinal microbiota of pre-ruminant dairy calves. Frontiers in Veterinary Science, 6, 371. https://doi.org/10.3389/fvets.2019.00371
- Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
- Ben Braiek, O., & Smaoui, S. (2019). Enterococci: between emerging pathogens and potential probiotics. BioMed research international, 2019, 1-13. https://doi.org/10.1155/2019/5938210
- Cetinkaya, Y., Falk, P., & Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 13(4), 686-707. https://doi.org/10.1128/cmr.13.4.686
- Chase, C. C., Hurley, D. J., & Reber, A. J. (2008). Neonatal immune development in the calf and its impact on vaccine response. Veterinary Clinics of North America: Food Animal Practice, 24(1), 87-104. https://doi.org/10.1016/j.cvfa.2007.11.001
- Clinical and Laboratory Standards Institute. (2022). Performance standards for antimicrobial susceptibility testing (M100). 32nd ed.
- Cooper, R., & Watson, I. (2013). A guide to feeding and assessment of calf milk replacer. Livestock, 18(6), 216-222. https://doi.org/10.12968/live.2013.18.6.216
- de Sousa, M. A., Muller, M. P., Berghahn, E., de Souza, C. F. V., & Granada, C. E. (2020). New enterococci isolated from cheese whey derived from different animal sources: High biotechnological potential as starter cultures. LWT - Food Science and Technology, 131, 109808. https://doi.org/10.1016/j.lwt.2020.109808
- Firth, C. L., Kremer, K., Werner, T., & Käsbohrer, A. (2021). The effects of feeding waste milk containing antimicrobial residues on dairy calf health. Pathogens, 10(2), 112. https://doi.org/10.3390/pathogens10020112
- Giraffa, G. (2003). Functionality of enterococci in dairy products. International Journal of Food Microbiology, 88(2-3), 215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
- Hadimli, H. H., Pinarkara, Y., Sakmanoğlu, A., Sayin, Z., Erganiş, O., Uslu, A., & Al-Shattrawi, H. J. (2017). Serotypes of Salmonella isolated from feces of cattle, buffalo, and camel and sensitivities to antibiotics in Turkey. Turkish Journal of Veterinary & Animal Sciences, 41(2), 193-198. https://doi.org/10.3906/vet-1604-67
- Hayman, M. M., Edelson-Mammel, S. G., Carter, P. J., Chen, Y., Metz, M., Sheehan, J. F., & Smoot, L. A. (2020). Prevalence of Cronobacter spp. and Salmonella in milk powder manufacturing facilities in the United States. Journal of Food Protection, 83(10), 1685-1692. https://doi.org/10.4315/JFP-20-047
- International Organization for Standardization. (2022, December 23).4832:2013 Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coliforms — Colony count technique. https://www.iso.org/standard/38282.html
- International Organization for Standardization. (2022, December 23). 4833-1:2013/Amd 1:2022 Microbiology of the food chain — Horizontal method for the enumeration of microorganisms — Part 1: Colony count at 30 °C by the pour plate technique https://www.iso.org/standard/73329.html
- International Organization for Standardization. (2022, December 23). 6579-1:2017 Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.html
- Jinneman, K. (1998). Bacteriological analytical manual (8th ed.), US Food and Drug Administration. Gaithersburg, USA: AOAC International.
- Kumar, S., Khan, M. A., Beijer, E., Liu, J., Lowe, K. K., Young, W., & Moon, C. D. (2021). Effect of milk replacer allowance on calf faecal bacterial community profiles and fermentation. Animal Microbiome, 3, 1-12. https://doi.org/10.1186/s42523-021-00088-2
- Langford, F. M., Weary, D. M., & Fisher, L. (2003). Antibiotic resistance in gut bacteria from dairy calves: a dose response to the level of antibiotics fed in milk. Journal of Dairy Science, 86(12), 3963-3966. https://doi.org/10.3168/jds.S0022-0302(03)74006-5
- Maunsell, F., & Donovan, G. A. (2008). Biosecurity and risk management for dairy replacements. Veterinary Clinics of North America: Food Animal Practice, 24(1), 155-190. https://doi.org/10.1016/j.cvfa.2007.10.007
- McGuirk, S. M. (2008). Disease management of dairy calves and heifers. Veterinary Clinics of North America: Food Animal Practice, 24(1), 139-153. https://doi.org/10.1016/j.cvfa.2007.10.003
- Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., & Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. International Dairy Journal, 16(1), 61-69. https://doi.org/10.1016/j.idairyj.2005.01.001
- Nilsson, O. (2012). Vancomycin resistant enterococci in farm animals–occurrence and importance. Infection Ecology & Epidemiology, 2(1), 16959. https://doi.org/10.3402/iee.v2i0.16959
- Scheid, J. F. (2012). Management of animal feed safety in the USA. In Animal Feed Contamination (pp. 608-624). Woodhead Publishing. https://doi.org/10.1533/9780857093615.6.608
- Schwaiger, K., Storch, J., Bauer, C., & Bauer, J. (2020). Development of selected bacterial groups of the rectal microbiota of healthy calves during the first week postpartum. Journal of Applied Microbiology, 128(2), 366-375. https://doi.org/10.1111/jam.14484
- Silva, N., Igrejas, G., Gonçalves, A., & Poeta, P. (2012). Commensal gut bacteria: distribution of Enterococcus species and prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal. Annals of microbiology, 62(2), 449-459. https://doi.org/10.1007/s13213-011-0308-4
- USDA. (2023, June 21). Dairy 2014: Dairy cattle management practices in the United States. https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_PartI_1.pdf
- USDA. (2023, March 12). A guide to calf milk replacers: types, use, and quality. 2018. https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/bamn/BAMN14_GuideMilkRepl.pdf
- Wierup, M., & Häggblom, P. (2010). An assessment of soybeans and other vegetable proteins as source of Salmonella contamination in pig production. Acta Veterinaria Scandinavica, 52, 1-9. https://doi.org/10.1186/1751-0147-52-15
- Wood, D. (2022). Milk Replacer Ingredients: What and Why?. Veterinary Clinics: Food Animal Practice, 38(1), 133-152. https://doi.org/10.1016/j.cvfa.2021.11.011
Ticari buzağı mamalarının mikrobiyolojik analizi ve izole edilen Enterococcus türlerinde antibiyotik dirençliliği
Year 2023,
, 241 - 248, 15.12.2023
Ali Uslu
,
Mevlüt Atalay
,
Oguzhan Denizli
,
Aslı Sakmanoğlu
,
Zafer Sayın
Abstract
Çiftliklerde buzağı mamalarının, pastörize edilmemiş tank sütü veya antibiyotikli atık süt yerine tercih edilmesinin nedenlerinden biri de çiftlikte oluşabilecek salgın hastalıkları ve antibiyotik direncini önlemektir. Bu çalışmada, Türkiye genelindeki süt çiftliklerinden elde edilen ticari buzağı mamasi ürünleri (n = 12) mikrobiyolojik kültür ve polimeraz zincir reaksiyonu (PCR) yöntemiyle analiz edildi. Buzağı mamaları ISO standartları mikrobiyolojik analiz yöntemleri ile toplam bakteri sayısı, koliform E. coli ve E. coli O157-H7, Salmonella spp., Staphylococcus spp., Streptococcus spp., Enterococcus spp. yönünden degerlendirildi. Buzağı maması örneklerinin tamamından Enterococcus spp. izole edildi. Gross-Es geninin varlığı PCR ile doğrulandı. Örneklerden Salmonella spp., E. coli, Staphylococcus spp. ve Streptococcus spp. izole edilmedi. Ayrıca bakteri sayım sonuçlarına göre her bir gram buzağı mamasında ortalama 5.3x107 Enterococcus spp. izole edildi. İzole edilen bakterilerin antimikrobiyal analizi CLSI 2022 verilerine göre tamamlandı, 11 izolat çoklu ilaç dirençli, 1 izolat ise geniş çaplı ilaç dirençli olarak tanımlandı. Bunun dışında geniş çaplı ilaç dirençli olarak tanımlanan izolatın Vankomisine dirençli olduğu ve Van A direnç genini de taşıdığı belirlendi. Buzagi mamalarının çoğu hayvansal kökenli proteinler ile hazırlanır ve patojenler içerebilir. Süt ikame maddeleri çoğu çiftlikte biyogüvenlik amacıyla kullanılmaktadır. Bu ürünlerin buzağı bağırsak mikrobiyota üzerinde etkisi olduğu bilinmektedir. Bu çalışmada buzağı mamalarının mevzuata uygun şekilde hazırlanmaması halinde çiftlik içi biyogüvenlik faktörlerini tehdit edebileceği gösterilmiştir. Buzağıların hastalıklara karşı en savunmasız oldukları dönemde beslemede kullanılan buzağı mamalarının antibiyotiklere dirençli Enterococci içermesi endişe vericidir. Buzağı beslemede saha veteriner hekimleri buzağı mamalarının mikrobiyolojik sertifikasyonu hakkında bilgi sahibi olmalı, bu ürünlerin pastörizasyon yapılmadan kullanılmaması konusunda üreticilere bilgi verilmelidir.
References
- Amin, N., & Seifert, J. (2021). Dynamic progression of the calf’s microbiome and its influence on host health. Computational and Structural Biotechnology Journal, 19, 989-1001. https://doi.org/10.1016/j.csbj.2021.01.035
- Aun, E., Kisand, V., Laht, M., Telling, K., Kalmus, P., Väli, Ü., & Tenson, T. (2021). Molecular characterization of Enterococcus isolates from different sources in Estonia reveals potential transmission of resistance genes among different reservoirs. Frontiers in Microbiology, 12, 601490. https://doi.org/10.3389/fmicb.2021.601490
- Aust, V., Knappstein, K., Kunz, H. J., Kaspar, H., Wallmann, J., & Kaske, M. (2013). Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria. Journal of Animal Physiology and Animal Nutrition, 97(6), 1091-1103. https://doi.org/10.1111/jpn.12019
- Badman, J., Daly, K., Kelly, J., Moran, A. W., Cameron, J., Watson, I., & Shirazi-Beechey, S. P. (2019). The effect of milk replacer composition on the intestinal microbiota of pre-ruminant dairy calves. Frontiers in Veterinary Science, 6, 371. https://doi.org/10.3389/fvets.2019.00371
- Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
- Ben Braiek, O., & Smaoui, S. (2019). Enterococci: between emerging pathogens and potential probiotics. BioMed research international, 2019, 1-13. https://doi.org/10.1155/2019/5938210
- Cetinkaya, Y., Falk, P., & Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 13(4), 686-707. https://doi.org/10.1128/cmr.13.4.686
- Chase, C. C., Hurley, D. J., & Reber, A. J. (2008). Neonatal immune development in the calf and its impact on vaccine response. Veterinary Clinics of North America: Food Animal Practice, 24(1), 87-104. https://doi.org/10.1016/j.cvfa.2007.11.001
- Clinical and Laboratory Standards Institute. (2022). Performance standards for antimicrobial susceptibility testing (M100). 32nd ed.
- Cooper, R., & Watson, I. (2013). A guide to feeding and assessment of calf milk replacer. Livestock, 18(6), 216-222. https://doi.org/10.12968/live.2013.18.6.216
- de Sousa, M. A., Muller, M. P., Berghahn, E., de Souza, C. F. V., & Granada, C. E. (2020). New enterococci isolated from cheese whey derived from different animal sources: High biotechnological potential as starter cultures. LWT - Food Science and Technology, 131, 109808. https://doi.org/10.1016/j.lwt.2020.109808
- Firth, C. L., Kremer, K., Werner, T., & Käsbohrer, A. (2021). The effects of feeding waste milk containing antimicrobial residues on dairy calf health. Pathogens, 10(2), 112. https://doi.org/10.3390/pathogens10020112
- Giraffa, G. (2003). Functionality of enterococci in dairy products. International Journal of Food Microbiology, 88(2-3), 215-222. https://doi.org/10.1016/S0168-1605(03)00183-1
- Hadimli, H. H., Pinarkara, Y., Sakmanoğlu, A., Sayin, Z., Erganiş, O., Uslu, A., & Al-Shattrawi, H. J. (2017). Serotypes of Salmonella isolated from feces of cattle, buffalo, and camel and sensitivities to antibiotics in Turkey. Turkish Journal of Veterinary & Animal Sciences, 41(2), 193-198. https://doi.org/10.3906/vet-1604-67
- Hayman, M. M., Edelson-Mammel, S. G., Carter, P. J., Chen, Y., Metz, M., Sheehan, J. F., & Smoot, L. A. (2020). Prevalence of Cronobacter spp. and Salmonella in milk powder manufacturing facilities in the United States. Journal of Food Protection, 83(10), 1685-1692. https://doi.org/10.4315/JFP-20-047
- International Organization for Standardization. (2022, December 23).4832:2013 Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coliforms — Colony count technique. https://www.iso.org/standard/38282.html
- International Organization for Standardization. (2022, December 23). 4833-1:2013/Amd 1:2022 Microbiology of the food chain — Horizontal method for the enumeration of microorganisms — Part 1: Colony count at 30 °C by the pour plate technique https://www.iso.org/standard/73329.html
- International Organization for Standardization. (2022, December 23). 6579-1:2017 Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.html
- Jinneman, K. (1998). Bacteriological analytical manual (8th ed.), US Food and Drug Administration. Gaithersburg, USA: AOAC International.
- Kumar, S., Khan, M. A., Beijer, E., Liu, J., Lowe, K. K., Young, W., & Moon, C. D. (2021). Effect of milk replacer allowance on calf faecal bacterial community profiles and fermentation. Animal Microbiome, 3, 1-12. https://doi.org/10.1186/s42523-021-00088-2
- Langford, F. M., Weary, D. M., & Fisher, L. (2003). Antibiotic resistance in gut bacteria from dairy calves: a dose response to the level of antibiotics fed in milk. Journal of Dairy Science, 86(12), 3963-3966. https://doi.org/10.3168/jds.S0022-0302(03)74006-5
- Maunsell, F., & Donovan, G. A. (2008). Biosecurity and risk management for dairy replacements. Veterinary Clinics of North America: Food Animal Practice, 24(1), 155-190. https://doi.org/10.1016/j.cvfa.2007.10.007
- McGuirk, S. M. (2008). Disease management of dairy calves and heifers. Veterinary Clinics of North America: Food Animal Practice, 24(1), 139-153. https://doi.org/10.1016/j.cvfa.2007.10.003
- Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., & Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. International Dairy Journal, 16(1), 61-69. https://doi.org/10.1016/j.idairyj.2005.01.001
- Nilsson, O. (2012). Vancomycin resistant enterococci in farm animals–occurrence and importance. Infection Ecology & Epidemiology, 2(1), 16959. https://doi.org/10.3402/iee.v2i0.16959
- Scheid, J. F. (2012). Management of animal feed safety in the USA. In Animal Feed Contamination (pp. 608-624). Woodhead Publishing. https://doi.org/10.1533/9780857093615.6.608
- Schwaiger, K., Storch, J., Bauer, C., & Bauer, J. (2020). Development of selected bacterial groups of the rectal microbiota of healthy calves during the first week postpartum. Journal of Applied Microbiology, 128(2), 366-375. https://doi.org/10.1111/jam.14484
- Silva, N., Igrejas, G., Gonçalves, A., & Poeta, P. (2012). Commensal gut bacteria: distribution of Enterococcus species and prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal. Annals of microbiology, 62(2), 449-459. https://doi.org/10.1007/s13213-011-0308-4
- USDA. (2023, June 21). Dairy 2014: Dairy cattle management practices in the United States. https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_PartI_1.pdf
- USDA. (2023, March 12). A guide to calf milk replacers: types, use, and quality. 2018. https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/bamn/BAMN14_GuideMilkRepl.pdf
- Wierup, M., & Häggblom, P. (2010). An assessment of soybeans and other vegetable proteins as source of Salmonella contamination in pig production. Acta Veterinaria Scandinavica, 52, 1-9. https://doi.org/10.1186/1751-0147-52-15
- Wood, D. (2022). Milk Replacer Ingredients: What and Why?. Veterinary Clinics: Food Animal Practice, 38(1), 133-152. https://doi.org/10.1016/j.cvfa.2021.11.011