Research Article
BibTex RIS Cite

Histopathological and biochemical Effects of 18β-glycyrrhetinic acid application on lipopolysaccharide-induced kidney toxicity in rats

Year 2024, , 42 - 49, 30.04.2024
https://doi.org/10.31797/vetbio.1419538

Abstract

Lipopolysaccharide (LPS) is an endotoxin found in the wall of gram-negative bacteria and causes acute inflammation when it enters the tissues. 18β-glycyrrhetinic acid (18β-GA) is a substance found in licorice root and is responsible for this plant's antiallergic, antioxidant, and anti-inflammatory activity. This study aimed to examine the possible effects of 18β-glycyrrhetinic acid on the damage caused by LPS in kidney tissue. The study divided 40 Sprague Dawley adult male rats into 5 equal groups (n = 8). The groups were created as follows; the control group; the group that received 1cc physiological saline throughout the experiment was the DMSO group; DMSO, an intraperitoneal carrier substance, was given. LPS group; A single dose of 7.5 mg/kg intraperitoneal (i.p) LPS was administered. 18β-GA50+LPS group; 18β-glycyrrhetinic acid was given by gavage at 50 mg/kg daily for 10 days, followed by a single dose of 7.5 mg/kg i.p. LPS was administered. 18β-GA100+LPS group; 18β-glycyrrhetinic acid was administered by gavage at 100 mg/kg daily for 10 days, followed by a single dose of 7.5 mg/kg i.p. LPS was administered. 18β-GA100 group; 18β-glycyrrhetinic was given by gavage at 100 mg/kg daily for 10 days. 24 hours after LPS application to all groups, the kidney tissues of the rats were removed under anesthesia and placed in 10% formaldehyde. Histopathological and oxidative stress parameters analyses were performed in kidney tissue.

References

  • Abd El-Twab, S. M., Hozayen, W. G., Hussein, O. E., & Mahmoud, A. M. (2016). 18 β-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Renal Failure, 38(9), 1516-1527. https://doi.org/10.1080/0886022X.2016.1216722
  • Alwazeer, D. (2023). Recent knowledge of hydrogen therapy: Cases of rat. Rats, 1(1), 11–13. https://doi.org/10.5281/zenodo.8143351
  • Ban, K. Y., Nam, G. Y., Kim, D., Oh, Y. S., & Jun, H. S. (2022). Prevention of LPS-induced acute kidney injury in mice by bavachin and its potential mechanisms. Antioxidants, 11(11), 2096. https://doi.org/10.3390/antiox11112096
  • Boveris, A., & Cadenas, E. (1997). Cellular sources and steady-state levels of reactive oxygen species. Lung Biology in Health and Disease, 105, 1-26.
  • Cunningham, P. N., Dyanov, H. M., Park, P., Wang, J., Newell, K. A., & Quigg, R. J. (2002). Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. The Journal of Immunology, 168(11), 5817-5823. https://doi.org/10. 4049/jimmunol.168.11.5817
  • Eisenbrand, G. (2006). Glycyrrhizin. Molecular Nutrition & Food Research, 50(11), 1087-1088.
  • Gelen, V., Özkanlar, S., Kara, A., & Yeşildağ, A. (2023). Citrate‐coated silver nanoparticles loaded with agomelatine provide neuronal therapy in acute cerebral ischemia/reperfusion of rats by inhibiting the oxidative stress, endoplasmic reticulum stress, and P2X7 receptor‐mediated inflammasome. Environmental Toxicology. https://doi.org/10.1002/tox.24021
  • Gelen, V., Sengul, E., Yildirim, S., & Cinar, İ. (2023). The role of GRP78/ATF6/IRE1 and caspase-3/Bax/Bcl2 signaling pathways in the protective effects of gallic acid against cadmium-induced liver damage in rats. Iranian Journal of Basic Medical Sciences, 26(11), 1326. https://doi.org/10.22038 %2FIJBMS .2023.71343.15525
  • Gelen, V., Şengül, E., Yıldırım, S., Senturk, E., Tekin, S., & Kükürt, A. (2021). The protective effects of hesperidin and curcumin on 5-fluorouracil–induced nephrotoxicity in mice. Environmental Science and Pollution Research, 28, 47046-47055. https://doi.org/ 10.1007/s11356-021-13969-5
  • Gomez, H., Ince, C., De Backer, D., Pickkers, P., Payen, D., Hotchkiss, J., & Kellum, J. A. (2014). A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury. Shock (Augusta, Ga.), 41(1), 3. https://doi.org/10.1097%2FSHK.0000000000000052
  • Gündoğdu, H., Uluman, E., Yıldız, S. E., Kılıçle, P. A., Gezer, A., & Sarı, E. K. (2023). Therapeutic effect of pomegranate peel extract on heme oxygen-free 1 (HO-1) and angiotensin-converting enzyme-2 (ACE-2) in the kidney tissue of mice treated with mitomycin. Rats, 1(2), 27-34. https://doi.org/ 10.5281/zenodo.10444360
  • Hagiwara, S., Iwasaka, H., Maeda, H., & Noguchi, T. (2009). Landiolol, an ultrashort-acting β1-adrenoceptor antagonist, has protective effects in an LPS-induced systemic inflammation model. Shock, 31(5), 515-520. https://doi.org/10.1097/SHK. 0b013e3181863689
  • Hasan, S. K., Khan, R., Ali, N., Khan, A. Q., Rehman, M. U., Tahir, M., ... & Sultana, S. (2015). 18-β Glycyrrhetinic acid alleviates 2-acetylaminofluorene-induced hepatotoxicity in Wistar rats: role in hyperproliferation, inflammation and oxidative stress. Human & Experimental Toxicology, 34(6), 628-641. https://doi.org/10.1177/0960327114554045
  • Hayashi, H., Imanishi, N., Ohnishi, M., & Tojo, S. J. (2001). Sialyl Lewis X and anti-P-selectin antibody attenuate lipopolysaccharide-induced acute renal failure in rabbits. Nephron, 87(4), 352-360. https://doi.org/10.1159/000045942
  • Iguchi S, Iwamura H, NishizakiM, Hayashi A, Senokuchi K, Kobayashi K, Sakaki K, Hachiya K, Ichioka Y, Kawamura M (1992). Development of a highly cardioselective ultra short-acting β-blocker, ONO-1101. Chemical and pharmaceutical bulletin, 40(6), 1462-1469. https://doi.org/10.1248/cpb. 40.1462
  • Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., ... & Yamamoto, M. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. Journal of Biological Chemistry, 275(21), 16023-16029. https://doi.org/10.1074/jbc. 275.21.16023
  • Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development, 13(1), 76-86. https://doi.org/10.1101 /gad.13.1.76
  • Kadkhodaee, M., & Qasemi, A. (2004). Inhibition of inducible nitric oxide synthase reduces lipopolysaccharide‐induced renal injury in the rat. Clinical and Experimental Pharmacology and Physiology, 31(12), 842-846. https://doi.org/ 10.1111/j.1440-1681.2004.04096.x
  • Kalaiarasi, P., & Pugalendi, K. V. (2009). Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. European Journal of Pharmacology, 606(1-3), 269-273. https://doi.org/10.1016/j.ejphar.2008.12. 057
  • Kang, L., Li, X. Q., Chen, C., & Wang, F. R. (2014). Research progress on structure modification and biological activity of 18β-glycyrrhetinic acid. Current Research in Complementary & Alternative Medicine, 1(1), e00008.
  • Kao, T. C., Shyu, M. H., & Yen, G. C. (2010). Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. Journal of Agricultural and Food Chemistry, 58(15), 8623-8629. https://doi.org/10.1021/jf101841r
  • Kara, A., Gedikli, S., Sengul, E., Gelen, V., & Ozkanlar, S. (2016). Oxidative stress and autophagy. Free Radicals and Diseases, 69-86. https://doi.org/10.5772/64569
  • Kara, A., Gelen, V., & Kara, H. (2023). The Relationship of Some Neurodegenerative Diseases with Endoplasmic Reticulum Stress and Histopathological Changes in These Diseases: An Overview. Molecular Histopathology and Cytopathology. https://doi.org/ 10.5772/intechopen.111693
  • Knotek, M., Rogachev, B., Wang, W., Ecder, T., Melnikov, V., Gengaro, P. E., ... & Schrier, R. W. (2001). Endotoxemic renal failure in mice: Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney International, 59(6), 2243-2249. https://doi.org/10.1046/j.1523-1755.2001. 00740.x
  • Kobayashi, S., Susa, T., Ishiguchi, H., Myoren, T., Murakami, W., Kato, T., ... & Yano, M. (2015). A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum. PLoS One, 10(1), e0114314. https://doi.org/10.1371/journal.pone.0114314
  • Lopes, J. A., Jorge, S., Resina, C., Santos, C., Pereira, Á., Neves, J., ... & Prata, M. M. (2009). Acute kidney injury in patients with sepsis: a contemporary analysis. International Journal of Infectious Diseases, 13(2), 176-181. https://doi.org/10.1016/j.ijid. 2008.05.1231
  • Ma, T., Huang, C., Meng, X., Li, X., Zhang, Y., Ji, S., ... & Liang, H. (2016). A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2. Scientific Reports, 6(1), 25396. https://doi.org/ 10.1038/srep25396
  • Mahmoud, A. M., & Al Dera, H. S. (2015). 18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation. Genes & Nutrition, 10(6), 1-13. https://doi.org/10.1007/s12263-015-0491-1
  • Morelli, A., Ertmer, C., Westphal, M., Rehberg, S., Kampmeier, T., Ligges, S., ... & Singer, M. (2013). Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. Jama, 310(16), 1683-1691. https://doi.org/ 10.1001/jama.2013.278477
  • Mori, K., Morisaki, H., Yajima, S., Suzuki, T., Ishikawa, A., Nakamura, N., ... & Takeda, J. (2011). Beta-1 blocker improves survival of septic rats through preservation of gut barrier function. Intensive Care Medicine, 37, 1849-1856. https://doi.org/10. 1007/s00134-011-2330-1
  • Neveu, H. D. F. P. P., Kleinknecht, D., Brivet, F., Loirat, P. H., Landais, P., & French Study Group on Acute Renal Failure. (1996). Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. Nephrology Dialysis Transplantation, 11(2), 293-299. https://doi.org/10. 1093/ndt/11.2.293
  • Niu, X., Yao, Q., Li, W., Zang, L., Li, W., Zhao, J., ... & Zhi, W. (2019). Harmine mitigates LPS-induced acute kidney injury through inhibition of the TLR4-NF-κB/NLRP3 inflammasome signalling pathway in mice. European Journal of Pharmacology, 849, 160-169. https://doi.org/10.1016/j.ejphar.2019.01.062
  • Ogura, Y., Jesmin, S., Yamaguchi, N., Oki, M., Shimojo, N., Islam, M. M., ... & Mizutani, T. (2014). Potential amelioration of upregulated renal HIF-1alpha–endothelin-1 system by landiolol hydrochloride in a rat model of endotoxemia. Life Sciences, 118(2), 347-356. https://doi.org/10. 1016/j.lfs.2014.05.007
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Oppert, M., Engel, C., Brunkhorst, F. M., Bogatsch, H., Reinhart, K., Frei, U., ... & John, S. (2008). German Competence Network Sepsis (Sepnet) Acute renal failure in patients with severe sepsis and septic shock-a significant independent risk factor for mortality: results from the German prevalence study. Nephrology Dialysis Transplantation, 23(3), 904-909.
  • Raghavan, V., & Weisz, O. A. (2015). Flow stimulated endocytosis in the proximal tubule. Current Opinion in Nephrology and Hypertension, 24(4), 359. https://doi.org/10.1097%2FMNH.0000000000000135
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25, 192-205.
  • Silvester, W., Bellomo, R., & Cole, L. (2001). Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Critical Care Medicine, 29(10), 1910-1915.
  • Tiwari, M. M., Brock, R. W., Megyesi, J. K., Kaushal, G. P., & Mayeux, P. R. (2005). Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. American Journal of Physiology-Renal Physiology, 289(6), F1324-F1332. https://doi.org/ 10.1152/ajprenal.00124.2005
  • Tsao, C. M., Ho, S. T., Chen, A., Wang, J. J., Li, C. Y., Tsai, S. K., & Wu, C. C. (2004). Low-dose dexamethasone ameliorates circulatory failure and renal dysfunction in conscious rats with endotoxemia. Shock, 21(5), 484-491. https://doi.org/10.1097/01.shk. 0000124931.42937.23
  • Uchino, S. (2005). Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA, 294, 813-818.
  • Wu, C. H., Chen, A. Z., & Yen, G. C. (2015). Protective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. Journal of Agricultural and Food Chemistry, 63(4), 1200-1209. https://doi.org/10.1021/jf505471a
  • Young DS. Effects of Drugs on Clinical Laboratory Tests. 4th ed. Washington, DC: AACC Press, 1995.
  • Zeller, J. M., Buys, C. M., & Gudewicz, P. W. (1984). Effects of high-dose methotrexate on rat alveolar and inflammatory macrophage populations. Inflammation, 8, 231-239.
Year 2024, , 42 - 49, 30.04.2024
https://doi.org/10.31797/vetbio.1419538

Abstract

References

  • Abd El-Twab, S. M., Hozayen, W. G., Hussein, O. E., & Mahmoud, A. M. (2016). 18 β-Glycyrrhetinic acid protects against methotrexate-induced kidney injury by up-regulating the Nrf2/ARE/HO-1 pathway and endogenous antioxidants. Renal Failure, 38(9), 1516-1527. https://doi.org/10.1080/0886022X.2016.1216722
  • Alwazeer, D. (2023). Recent knowledge of hydrogen therapy: Cases of rat. Rats, 1(1), 11–13. https://doi.org/10.5281/zenodo.8143351
  • Ban, K. Y., Nam, G. Y., Kim, D., Oh, Y. S., & Jun, H. S. (2022). Prevention of LPS-induced acute kidney injury in mice by bavachin and its potential mechanisms. Antioxidants, 11(11), 2096. https://doi.org/10.3390/antiox11112096
  • Boveris, A., & Cadenas, E. (1997). Cellular sources and steady-state levels of reactive oxygen species. Lung Biology in Health and Disease, 105, 1-26.
  • Cunningham, P. N., Dyanov, H. M., Park, P., Wang, J., Newell, K. A., & Quigg, R. J. (2002). Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. The Journal of Immunology, 168(11), 5817-5823. https://doi.org/10. 4049/jimmunol.168.11.5817
  • Eisenbrand, G. (2006). Glycyrrhizin. Molecular Nutrition & Food Research, 50(11), 1087-1088.
  • Gelen, V., Özkanlar, S., Kara, A., & Yeşildağ, A. (2023). Citrate‐coated silver nanoparticles loaded with agomelatine provide neuronal therapy in acute cerebral ischemia/reperfusion of rats by inhibiting the oxidative stress, endoplasmic reticulum stress, and P2X7 receptor‐mediated inflammasome. Environmental Toxicology. https://doi.org/10.1002/tox.24021
  • Gelen, V., Sengul, E., Yildirim, S., & Cinar, İ. (2023). The role of GRP78/ATF6/IRE1 and caspase-3/Bax/Bcl2 signaling pathways in the protective effects of gallic acid against cadmium-induced liver damage in rats. Iranian Journal of Basic Medical Sciences, 26(11), 1326. https://doi.org/10.22038 %2FIJBMS .2023.71343.15525
  • Gelen, V., Şengül, E., Yıldırım, S., Senturk, E., Tekin, S., & Kükürt, A. (2021). The protective effects of hesperidin and curcumin on 5-fluorouracil–induced nephrotoxicity in mice. Environmental Science and Pollution Research, 28, 47046-47055. https://doi.org/ 10.1007/s11356-021-13969-5
  • Gomez, H., Ince, C., De Backer, D., Pickkers, P., Payen, D., Hotchkiss, J., & Kellum, J. A. (2014). A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury. Shock (Augusta, Ga.), 41(1), 3. https://doi.org/10.1097%2FSHK.0000000000000052
  • Gündoğdu, H., Uluman, E., Yıldız, S. E., Kılıçle, P. A., Gezer, A., & Sarı, E. K. (2023). Therapeutic effect of pomegranate peel extract on heme oxygen-free 1 (HO-1) and angiotensin-converting enzyme-2 (ACE-2) in the kidney tissue of mice treated with mitomycin. Rats, 1(2), 27-34. https://doi.org/ 10.5281/zenodo.10444360
  • Hagiwara, S., Iwasaka, H., Maeda, H., & Noguchi, T. (2009). Landiolol, an ultrashort-acting β1-adrenoceptor antagonist, has protective effects in an LPS-induced systemic inflammation model. Shock, 31(5), 515-520. https://doi.org/10.1097/SHK. 0b013e3181863689
  • Hasan, S. K., Khan, R., Ali, N., Khan, A. Q., Rehman, M. U., Tahir, M., ... & Sultana, S. (2015). 18-β Glycyrrhetinic acid alleviates 2-acetylaminofluorene-induced hepatotoxicity in Wistar rats: role in hyperproliferation, inflammation and oxidative stress. Human & Experimental Toxicology, 34(6), 628-641. https://doi.org/10.1177/0960327114554045
  • Hayashi, H., Imanishi, N., Ohnishi, M., & Tojo, S. J. (2001). Sialyl Lewis X and anti-P-selectin antibody attenuate lipopolysaccharide-induced acute renal failure in rabbits. Nephron, 87(4), 352-360. https://doi.org/10.1159/000045942
  • Iguchi S, Iwamura H, NishizakiM, Hayashi A, Senokuchi K, Kobayashi K, Sakaki K, Hachiya K, Ichioka Y, Kawamura M (1992). Development of a highly cardioselective ultra short-acting β-blocker, ONO-1101. Chemical and pharmaceutical bulletin, 40(6), 1462-1469. https://doi.org/10.1248/cpb. 40.1462
  • Ishii, T., Itoh, K., Takahashi, S., Sato, H., Yanagawa, T., Katoh, Y., ... & Yamamoto, M. (2000). Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. Journal of Biological Chemistry, 275(21), 16023-16029. https://doi.org/10.1074/jbc. 275.21.16023
  • Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & Development, 13(1), 76-86. https://doi.org/10.1101 /gad.13.1.76
  • Kadkhodaee, M., & Qasemi, A. (2004). Inhibition of inducible nitric oxide synthase reduces lipopolysaccharide‐induced renal injury in the rat. Clinical and Experimental Pharmacology and Physiology, 31(12), 842-846. https://doi.org/ 10.1111/j.1440-1681.2004.04096.x
  • Kalaiarasi, P., & Pugalendi, K. V. (2009). Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. European Journal of Pharmacology, 606(1-3), 269-273. https://doi.org/10.1016/j.ejphar.2008.12. 057
  • Kang, L., Li, X. Q., Chen, C., & Wang, F. R. (2014). Research progress on structure modification and biological activity of 18β-glycyrrhetinic acid. Current Research in Complementary & Alternative Medicine, 1(1), e00008.
  • Kao, T. C., Shyu, M. H., & Yen, G. C. (2010). Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. Journal of Agricultural and Food Chemistry, 58(15), 8623-8629. https://doi.org/10.1021/jf101841r
  • Kara, A., Gedikli, S., Sengul, E., Gelen, V., & Ozkanlar, S. (2016). Oxidative stress and autophagy. Free Radicals and Diseases, 69-86. https://doi.org/10.5772/64569
  • Kara, A., Gelen, V., & Kara, H. (2023). The Relationship of Some Neurodegenerative Diseases with Endoplasmic Reticulum Stress and Histopathological Changes in These Diseases: An Overview. Molecular Histopathology and Cytopathology. https://doi.org/ 10.5772/intechopen.111693
  • Knotek, M., Rogachev, B., Wang, W., Ecder, T., Melnikov, V., Gengaro, P. E., ... & Schrier, R. W. (2001). Endotoxemic renal failure in mice: Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney International, 59(6), 2243-2249. https://doi.org/10.1046/j.1523-1755.2001. 00740.x
  • Kobayashi, S., Susa, T., Ishiguchi, H., Myoren, T., Murakami, W., Kato, T., ... & Yano, M. (2015). A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum. PLoS One, 10(1), e0114314. https://doi.org/10.1371/journal.pone.0114314
  • Lopes, J. A., Jorge, S., Resina, C., Santos, C., Pereira, Á., Neves, J., ... & Prata, M. M. (2009). Acute kidney injury in patients with sepsis: a contemporary analysis. International Journal of Infectious Diseases, 13(2), 176-181. https://doi.org/10.1016/j.ijid. 2008.05.1231
  • Ma, T., Huang, C., Meng, X., Li, X., Zhang, Y., Ji, S., ... & Liang, H. (2016). A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2. Scientific Reports, 6(1), 25396. https://doi.org/ 10.1038/srep25396
  • Mahmoud, A. M., & Al Dera, H. S. (2015). 18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation. Genes & Nutrition, 10(6), 1-13. https://doi.org/10.1007/s12263-015-0491-1
  • Morelli, A., Ertmer, C., Westphal, M., Rehberg, S., Kampmeier, T., Ligges, S., ... & Singer, M. (2013). Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. Jama, 310(16), 1683-1691. https://doi.org/ 10.1001/jama.2013.278477
  • Mori, K., Morisaki, H., Yajima, S., Suzuki, T., Ishikawa, A., Nakamura, N., ... & Takeda, J. (2011). Beta-1 blocker improves survival of septic rats through preservation of gut barrier function. Intensive Care Medicine, 37, 1849-1856. https://doi.org/10. 1007/s00134-011-2330-1
  • Neveu, H. D. F. P. P., Kleinknecht, D., Brivet, F., Loirat, P. H., Landais, P., & French Study Group on Acute Renal Failure. (1996). Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. Nephrology Dialysis Transplantation, 11(2), 293-299. https://doi.org/10. 1093/ndt/11.2.293
  • Niu, X., Yao, Q., Li, W., Zang, L., Li, W., Zhao, J., ... & Zhi, W. (2019). Harmine mitigates LPS-induced acute kidney injury through inhibition of the TLR4-NF-κB/NLRP3 inflammasome signalling pathway in mice. European Journal of Pharmacology, 849, 160-169. https://doi.org/10.1016/j.ejphar.2019.01.062
  • Ogura, Y., Jesmin, S., Yamaguchi, N., Oki, M., Shimojo, N., Islam, M. M., ... & Mizutani, T. (2014). Potential amelioration of upregulated renal HIF-1alpha–endothelin-1 system by landiolol hydrochloride in a rat model of endotoxemia. Life Sciences, 118(2), 347-356. https://doi.org/10. 1016/j.lfs.2014.05.007
  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  • Oppert, M., Engel, C., Brunkhorst, F. M., Bogatsch, H., Reinhart, K., Frei, U., ... & John, S. (2008). German Competence Network Sepsis (Sepnet) Acute renal failure in patients with severe sepsis and septic shock-a significant independent risk factor for mortality: results from the German prevalence study. Nephrology Dialysis Transplantation, 23(3), 904-909.
  • Raghavan, V., & Weisz, O. A. (2015). Flow stimulated endocytosis in the proximal tubule. Current Opinion in Nephrology and Hypertension, 24(4), 359. https://doi.org/10.1097%2FMNH.0000000000000135
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25, 192-205.
  • Silvester, W., Bellomo, R., & Cole, L. (2001). Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Critical Care Medicine, 29(10), 1910-1915.
  • Tiwari, M. M., Brock, R. W., Megyesi, J. K., Kaushal, G. P., & Mayeux, P. R. (2005). Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. American Journal of Physiology-Renal Physiology, 289(6), F1324-F1332. https://doi.org/ 10.1152/ajprenal.00124.2005
  • Tsao, C. M., Ho, S. T., Chen, A., Wang, J. J., Li, C. Y., Tsai, S. K., & Wu, C. C. (2004). Low-dose dexamethasone ameliorates circulatory failure and renal dysfunction in conscious rats with endotoxemia. Shock, 21(5), 484-491. https://doi.org/10.1097/01.shk. 0000124931.42937.23
  • Uchino, S. (2005). Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA, 294, 813-818.
  • Wu, C. H., Chen, A. Z., & Yen, G. C. (2015). Protective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. Journal of Agricultural and Food Chemistry, 63(4), 1200-1209. https://doi.org/10.1021/jf505471a
  • Young DS. Effects of Drugs on Clinical Laboratory Tests. 4th ed. Washington, DC: AACC Press, 1995.
  • Zeller, J. M., Buys, C. M., & Gudewicz, P. W. (1984). Effects of high-dose methotrexate on rat alveolar and inflammatory macrophage populations. Inflammation, 8, 231-239.
There are 44 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Elif Erbaş 0000-0003-1750-3889

Volkan Gelen 0000-0002-5091-1262

Seda Yakut 0000-0003-1673-5661

Early Pub Date April 22, 2024
Publication Date April 30, 2024
Submission Date January 14, 2024
Acceptance Date March 26, 2024
Published in Issue Year 2024

Cite

APA Erbaş, E., Gelen, V., & Yakut, S. (2024). Histopathological and biochemical Effects of 18β-glycyrrhetinic acid application on lipopolysaccharide-induced kidney toxicity in rats. Journal of Advances in VetBio Science and Techniques, 9(1), 42-49. https://doi.org/10.31797/vetbio.1419538

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download