Review
BibTex RIS Cite

Hayvan beslemede nanoteknoloji

Year 2018, Volume: 3 Issue: 3, 90 - 97, 31.12.2018
https://doi.org/10.31797/vetbio.494059

Abstract

Nanometre boyutundaki yem maddeleri, spesifik yüzey alanının
genişlemiş olmasıyla daha güçlü absorbsiyon kabiliyetine sahip olduklarından
yemlerin biyoyararlanımını arttırma özelliğindedirler.
Böylece hayvanın gelişim
performansını, tükettiği yemin besleme değerini ve sindirilebilirliğini,
dolayısıyla yemin verime dönüşüm oranını arttırmak ve bağışıklık durumunu
iyileştirmek mümkündür. Aynı zamanda atılan dışkı
miktarını azaltarak, çevre kirliliğinin azaltılmasına da katkıda
bulunmaktadırlar. Maddenin nano boyutta manipülasyonu, yem
moleküllerinin işlevselliğini ürün kalitesine yansıtması ile de yarar
sağlamaktadır.
Konu ile
ilgili olarak yapılmış araştırmalar genel olarak değerlendirildiğinde,
nanopartiküllerin yem katkı maddesi olarak kullanılması sonucunda büyüme
performansı, yemin verime dönüşüm oranı, serum total protein ve albümin ile
toplam antioksidan kapasitenin önemli ölçüde arttırılabileceği, sindirim,
metabolizma ve besin alımı gibi çok sayıda biyolojik sürecin, üretim sürecinin
ve çevresel kontaminasyonun azaltılabileceği vurgulanmaktadır. Ancak nano
yapıdaki yem maddelerinin uygunluğu, etkinliği, toksik özellik ve sınırlarını
belirlemeye yönelik araştırmalar yapılmasına ihtiyaç vardır.  Bu derlemede, nanoteknolojinin hayvansal üretimdeki yeri, hayvan beslemede nanoteknoloji ile
hayvanlar üzerinde yapılmış bazı araştırmalara yer verilmiştir.

References

  • Ahmadi, F., Kurdestany, A.H. (2010). The ımpact of silver nano particles on growth performance, lymphoid organs and oxidative stress ındicators in broiler chicks. Global Veterinaria, 5 (6): 366-370.Ahmadi, F., Ebrrahimnezhad, Y., Sis, M.N., Ghalehkandi, J.G. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int. J. Bio. Sci., 3(7): 23-29.Anonymous, (2004a). Down on the farm. The impacts of nano-scale technologies on food and agriculture. Canada. http://www.etcgroup.org /files/publication/81/01/nr.Anonymous, (2004b). Nanoscience and nanotechnologies: opportunities and uncertainties. RSRAE (Royal Society and Royal Academy of Engineering), London. https://royalsociety.org/media/Royal_Society_Content/policy/publications/2004.Anonymous, (2007). Extreme genetic engineering: an ıntroduction to synthetic biology. Canada. http://www.etcgroup.org /files/publication/81/01/nr_downonfarm_final.pdf.Anonymous, (2009). What is nanotechnology? National nanotechnology initiative (NNI). www.nano.gov/html /facts/whatIsNano.htm.Bera D, Qian L, Tseng T-K, Holloway PH., 2010. Quantum Dots and Their Multimodal Applications: A Review. Materials, 3(4): 2260-2345.Bunglavan, S.J. (2013). Effect of supplementation of selenium nano particles on growth and health status of guinea pigs. Thesis, PhD. Deemed University, Indian Veterinary Research Institute, Izatnagar, India. 140 p.Buzea, C., Blandino, I.I.P., Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases., 2(4): 17-172.Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation J. Dairy Sci., 90:2580–2595.Carralero, V., González-Cortés, A., Yañez-Sedeño, P., Pingarrón, J.M. (2007). Development of a progesterona immunosensor base don a colloidal gold-graphite-teflon composite electrode. Electroanalysis, 19:853-858.Chau, C., Wu, S.H., Yen, G.C. (2007). The development of regulations for food nanotechnology. Trends Food Sci. – Tech., 18:269-280.Chen, H, Weiss, J and Shahidi, F (2006). Nanotechnology in nutraceuticals and functional foods. Food Technol. 3: 30.Ditta, A. (2012). How helpful is nanotechnology in agriculture? Adv. Nat. Sci.: Nanosci. Nanotechnol., 3 033002 (10pp).Helmut, K. (2004). Study: Nanotechnology in Food and Food Processing Industry Wide 20032006-2010-2015. Tubingen, Germany: Helmut Keiser Consulting.Hunt, G., Mehta, M. (2006). Nanotechnology challenges: ımplications for philosophy, ethics and society. London: Earthscan. http://www.joachimschummer.net.Gonzales, E.A., Fu, C.M., Lu, F.Y., Lien, T.F. (2009). Effects of nano copper on copper availability and nutrients digestibility, growth performance and serum traits of piglets Livest. Sci., 126: 122–129.Joseph, T., Morrison, M. (2006). “Nanotechnology in Agriculture and Food.” Institute of Nanotechnology: May. Available at: www.nanoforum.org.Kouhi M., Akbarzadeh A., Davaran S. (2012). Quantum dots: synthesis, bioapplications and toxicity. Nanoscale Research Letters, 7:480Lal, R. (2007). Soil science and the carbon civilization. Soil Sci. Soc. Am. J. 71:1425-1437.Liao, C.D., Hung, W.L., Jan, K.C., Yeh, A.I., Ho, C.T., Hwang, L.S. (2010). Nano/submicrosized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem., 119(3):896:902.Lien, T.F., Yeh, H.S., Lu, F.Y., Fu, C.M. (2009). Nanoparticles of chromium picolinate enhance chromium digestibility and absorption. J. Sci. Food Agri. 89(7): 1164-1167.Lin, Y.C., Huang, J.T., Li, M.Z., Cheng, C.Y., Lien, T.F. (2015). Effect of supplemental nanoparticle trivalent chromium on the nutrient utilization, growth performance and serum traits of broilers. J. Anim. Physiol. Anim. Nutr., 99(1): 59-65.Mohammed, E.T., Safwat, G.M. (2013). Assessment of the ameliorative role of selenium nanoparticles on the oxidative stress of acetaminophen in some tissues of male albino rats. BeniSuef University. J. Basic Appl. Sci., 2(2): 80-85.Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P., Behura, N.C., Sahoo, G., Sethy, K., Bhol, B.P., Dhama, K. (2014). Effects of dietary nanoselenium supplementation on the performance of layer grower birds. Asian J. Anim. Vet. Adv., 9(10): 641-652.Moraru, C., Panchapakesan, C., Huang, Q., Takhistov, P., Liu, S., Kokini, J. (2003). Nanotechnology: A new frontier in food science. Food Technology (57) 12: 24-29.Opara, L. (2004). Emerging technological ınnovation triad for smart agriculture in the 21st century. J. Sci. Res. Dev., 4:1-27.Qian, L., Hinestroza, J.P. (2004). Application of nanotechnology for high performance textiles. J. Text. App., Techn. Management, 4:1-7.Rajendran, D., Thulasi, A., Jash, S., Selvaraju, S., Rao, S.B.N. (2013). Synthesis and application of nano minerals in livestock ındustry. Anim. Nutr. Repr. Phys., 25, 517-530.Rohner, F., Ernst, F.O., Arnold, M., Hilbe, M., Biebinger, R., Ehrensperger, F., Pratsinis, S. E., Langhans, W., Hurrell, R.F., Zimmermann, M.B. (2007). Synthesis, characterization and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137: 614-619.Scirinis, G., Lyons, K. (2007). The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. I. J. Sociol. Food Agric. 15(2):22-44. Scott, N.R. (2005). Nanotechnology and animal health; revue scientifique et technique. In. Office Epizootics. 24:425-432.Scott, N.R. (2007). “Nanoscience in veterinary medicine”. Vet. Res. Commun. 31(1):139-144.Sharma, A., Qiang, Y., Antony, J., Meyer, D., Kornacki, P., Paszczynski, A. (2007). Dramatic increase in stability and longevity of enzymes attached to mono dispersive iron nanoparticles. Magnetics, IEEE Transactions, 43: 2418-2420.Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Shi, L., Wanga, Q., Yanga, R., Lei, F. (2011a). Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Res., 96: 49–52.Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., Shi, L. (2011b). Effect of elemental nanoselenium on feed digestibility, rumen fermentation and purine derivatives in sheep. Anim. Feed Sci. Tech.,163: 136-142.Shi, L., Xuna, W., Yue, W., Zhang, C., Rena, Y., Shi, L., Wanga, Q., Yanga, R., Lei, F. (2011c). Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats, Small Rum. Res., 96: 49-52.Sirirat, N., Lu, J.J., Hung, A.T.Y., Lien, T.F. (2013). Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention and tissues minerals accumulation in layer chickens. J. Agri. Sci., 5(2), 150.Sridhar, K., Nagalakshmi, D., Rao, D.S., Rao, S.V.R. (2015). Effect of supplementation of graded levels of organic zinc on nutrient utilization and retention of minerals in broiler chicken. Indian J. Anim. Nutr., 32(1): 80-85.Uniyal, S. (2015). Effect of zinc nanoparticles supplementation on growth and health status of guinea pigs (Cavia porcellus). Thesis, M.V.Sc. Deemed University, Indian Veterinary Research Institute, Izatnagar, India. 70 p.Uniyal, S., Dutta, N., Raza, M., Jaiswal, S.K., Sahoo, J.K., Ashwin, K.M. (2017). Application of nano minerals in the field of animal nutrition: A Review. Bull. Env. Pharmacol. Life Sci., 6:(4) 04-08.Xin, J.H (2006). Nanotechnology for textiles and apparel. The Hong Kong Polytechnic University, Institute of Textiles-Clothing, www.itc.gov.hk/innotech/IFT. Wang, M.Q., Xu, Z.R. (2004). Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian Aust. J. Anim. Sci., 17: 1118-1122.Wang, Y. (2009). Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of Avian broiler. Biol. Trace Elem. Res., 128: 184–190.Wang, C., Wang, M.Q., Ye, S.S., Tao, W.J., Du, Y.J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult. Sci., 90: 2223–2228.Wang, M.Q., Du, Y. J., Wang, C., Tao, W. J., He, Y.D., Li, H. (2012). Effects of copper-loaded chitosan nanoparticles on ıntestinal microflora and morphology in Weaned piglets. Biol. Trace Elem. Res., 149(2):184-189.Zha, L., Zeng, J., Sun, S., Deng, H., Luo, H., Li, W. (2009). Chromium (III) nanoparticles affect hormone and ımmune responses in heat-stressed rats. Biol. Trace Elem. Res., 129: 157–169.Zhang, J.S., Wang, H., Yan, X., Zhang, L.D. (2004). Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci., 75: 447-459.Zhao, Y.C., Shu, T.X., Xiao, Y. X., Qiu, S.X., Pan, Q. J., Tang, X.Z. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broiler. Biol. Trace Elem. Res., 160(3): 361-367.Zhou, X., Wang, Y. (2011). Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult. Sci., 90: 680–686.

Nanotechnology in animal nutrition

Year 2018, Volume: 3 Issue: 3, 90 - 97, 31.12.2018
https://doi.org/10.31797/vetbio.494059

Abstract

Nanometer size feeds have the ability to increase the bioavailability of feeds as they have stronger absorption capability due to the enlarging of the specific surface area. Thus, it is possible to improve the immune performance of the animal, the feed value and the digestibility of the feed it consumes, thus increasing the rate of conversion to feed and efficiency. At the same time, they reduce the amount of fecal matter and contribute to the reduction of environmental pollution. The nano size manipulation of the substance also benefits the functionality of the feed molecules to the product quality by reflecting. In general evaluation of the performed researches it was concluded that the use of nanoparticles as feed additives can be increased significantly of growth performance, feed conversion rate, total protein and albumin and total antioxidant capacity ; It is emphasized that many biological processes can be reduced such as digestion, metabolism and nutrient intake, production process and environmental contamination.  However, there is a need for research to determine the suitability, efficacy, toxic properties and boundaries of feed materials in nano structure. In this review have been included the place of nanotechnology in animal production, nanotechnology in animal nutrition and some researches on animals.

References

  • Ahmadi, F., Kurdestany, A.H. (2010). The ımpact of silver nano particles on growth performance, lymphoid organs and oxidative stress ındicators in broiler chicks. Global Veterinaria, 5 (6): 366-370.Ahmadi, F., Ebrrahimnezhad, Y., Sis, M.N., Ghalehkandi, J.G. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int. J. Bio. Sci., 3(7): 23-29.Anonymous, (2004a). Down on the farm. The impacts of nano-scale technologies on food and agriculture. Canada. http://www.etcgroup.org /files/publication/81/01/nr.Anonymous, (2004b). Nanoscience and nanotechnologies: opportunities and uncertainties. RSRAE (Royal Society and Royal Academy of Engineering), London. https://royalsociety.org/media/Royal_Society_Content/policy/publications/2004.Anonymous, (2007). Extreme genetic engineering: an ıntroduction to synthetic biology. Canada. http://www.etcgroup.org /files/publication/81/01/nr_downonfarm_final.pdf.Anonymous, (2009). What is nanotechnology? National nanotechnology initiative (NNI). www.nano.gov/html /facts/whatIsNano.htm.Bera D, Qian L, Tseng T-K, Holloway PH., 2010. Quantum Dots and Their Multimodal Applications: A Review. Materials, 3(4): 2260-2345.Bunglavan, S.J. (2013). Effect of supplementation of selenium nano particles on growth and health status of guinea pigs. Thesis, PhD. Deemed University, Indian Veterinary Research Institute, Izatnagar, India. 140 p.Buzea, C., Blandino, I.I.P., Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases., 2(4): 17-172.Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., Ferret, A. (2007). Invited review: essential oils as modifiers of rumen microbial fermentation J. Dairy Sci., 90:2580–2595.Carralero, V., González-Cortés, A., Yañez-Sedeño, P., Pingarrón, J.M. (2007). Development of a progesterona immunosensor base don a colloidal gold-graphite-teflon composite electrode. Electroanalysis, 19:853-858.Chau, C., Wu, S.H., Yen, G.C. (2007). The development of regulations for food nanotechnology. Trends Food Sci. – Tech., 18:269-280.Chen, H, Weiss, J and Shahidi, F (2006). Nanotechnology in nutraceuticals and functional foods. Food Technol. 3: 30.Ditta, A. (2012). How helpful is nanotechnology in agriculture? Adv. Nat. Sci.: Nanosci. Nanotechnol., 3 033002 (10pp).Helmut, K. (2004). Study: Nanotechnology in Food and Food Processing Industry Wide 20032006-2010-2015. Tubingen, Germany: Helmut Keiser Consulting.Hunt, G., Mehta, M. (2006). Nanotechnology challenges: ımplications for philosophy, ethics and society. London: Earthscan. http://www.joachimschummer.net.Gonzales, E.A., Fu, C.M., Lu, F.Y., Lien, T.F. (2009). Effects of nano copper on copper availability and nutrients digestibility, growth performance and serum traits of piglets Livest. Sci., 126: 122–129.Joseph, T., Morrison, M. (2006). “Nanotechnology in Agriculture and Food.” Institute of Nanotechnology: May. Available at: www.nanoforum.org.Kouhi M., Akbarzadeh A., Davaran S. (2012). Quantum dots: synthesis, bioapplications and toxicity. Nanoscale Research Letters, 7:480Lal, R. (2007). Soil science and the carbon civilization. Soil Sci. Soc. Am. J. 71:1425-1437.Liao, C.D., Hung, W.L., Jan, K.C., Yeh, A.I., Ho, C.T., Hwang, L.S. (2010). Nano/submicrosized lignan glycosides from sesame meal exhibit higher transport and absorption efficiency in Caco-2 cell monolayer. Food Chem., 119(3):896:902.Lien, T.F., Yeh, H.S., Lu, F.Y., Fu, C.M. (2009). Nanoparticles of chromium picolinate enhance chromium digestibility and absorption. J. Sci. Food Agri. 89(7): 1164-1167.Lin, Y.C., Huang, J.T., Li, M.Z., Cheng, C.Y., Lien, T.F. (2015). Effect of supplemental nanoparticle trivalent chromium on the nutrient utilization, growth performance and serum traits of broilers. J. Anim. Physiol. Anim. Nutr., 99(1): 59-65.Mohammed, E.T., Safwat, G.M. (2013). Assessment of the ameliorative role of selenium nanoparticles on the oxidative stress of acetaminophen in some tissues of male albino rats. BeniSuef University. J. Basic Appl. Sci., 2(2): 80-85.Mohapatra, P., Swain, R.K., Mishra, S.K., Behera, T., Swain, P., Behura, N.C., Sahoo, G., Sethy, K., Bhol, B.P., Dhama, K. (2014). Effects of dietary nanoselenium supplementation on the performance of layer grower birds. Asian J. Anim. Vet. Adv., 9(10): 641-652.Moraru, C., Panchapakesan, C., Huang, Q., Takhistov, P., Liu, S., Kokini, J. (2003). Nanotechnology: A new frontier in food science. Food Technology (57) 12: 24-29.Opara, L. (2004). Emerging technological ınnovation triad for smart agriculture in the 21st century. J. Sci. Res. Dev., 4:1-27.Qian, L., Hinestroza, J.P. (2004). Application of nanotechnology for high performance textiles. J. Text. App., Techn. Management, 4:1-7.Rajendran, D., Thulasi, A., Jash, S., Selvaraju, S., Rao, S.B.N. (2013). Synthesis and application of nano minerals in livestock ındustry. Anim. Nutr. Repr. Phys., 25, 517-530.Rohner, F., Ernst, F.O., Arnold, M., Hilbe, M., Biebinger, R., Ehrensperger, F., Pratsinis, S. E., Langhans, W., Hurrell, R.F., Zimmermann, M.B. (2007). Synthesis, characterization and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr. 137: 614-619.Scirinis, G., Lyons, K. (2007). The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. I. J. Sociol. Food Agric. 15(2):22-44. Scott, N.R. (2005). Nanotechnology and animal health; revue scientifique et technique. In. Office Epizootics. 24:425-432.Scott, N.R. (2007). “Nanoscience in veterinary medicine”. Vet. Res. Commun. 31(1):139-144.Sharma, A., Qiang, Y., Antony, J., Meyer, D., Kornacki, P., Paszczynski, A. (2007). Dramatic increase in stability and longevity of enzymes attached to mono dispersive iron nanoparticles. Magnetics, IEEE Transactions, 43: 2418-2420.Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Shi, L., Wanga, Q., Yanga, R., Lei, F. (2011a). Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Res., 96: 49–52.Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., Shi, L. (2011b). Effect of elemental nanoselenium on feed digestibility, rumen fermentation and purine derivatives in sheep. Anim. Feed Sci. Tech.,163: 136-142.Shi, L., Xuna, W., Yue, W., Zhang, C., Rena, Y., Shi, L., Wanga, Q., Yanga, R., Lei, F. (2011c). Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats, Small Rum. Res., 96: 49-52.Sirirat, N., Lu, J.J., Hung, A.T.Y., Lien, T.F. (2013). Effect of different levels of nanoparticles chromium picolinate supplementation on performance, egg quality, mineral retention and tissues minerals accumulation in layer chickens. J. Agri. Sci., 5(2), 150.Sridhar, K., Nagalakshmi, D., Rao, D.S., Rao, S.V.R. (2015). Effect of supplementation of graded levels of organic zinc on nutrient utilization and retention of minerals in broiler chicken. Indian J. Anim. Nutr., 32(1): 80-85.Uniyal, S. (2015). Effect of zinc nanoparticles supplementation on growth and health status of guinea pigs (Cavia porcellus). Thesis, M.V.Sc. Deemed University, Indian Veterinary Research Institute, Izatnagar, India. 70 p.Uniyal, S., Dutta, N., Raza, M., Jaiswal, S.K., Sahoo, J.K., Ashwin, K.M. (2017). Application of nano minerals in the field of animal nutrition: A Review. Bull. Env. Pharmacol. Life Sci., 6:(4) 04-08.Xin, J.H (2006). Nanotechnology for textiles and apparel. The Hong Kong Polytechnic University, Institute of Textiles-Clothing, www.itc.gov.hk/innotech/IFT. Wang, M.Q., Xu, Z.R. (2004). Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian Aust. J. Anim. Sci., 17: 1118-1122.Wang, Y. (2009). Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of Avian broiler. Biol. Trace Elem. Res., 128: 184–190.Wang, C., Wang, M.Q., Ye, S.S., Tao, W.J., Du, Y.J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult. Sci., 90: 2223–2228.Wang, M.Q., Du, Y. J., Wang, C., Tao, W. J., He, Y.D., Li, H. (2012). Effects of copper-loaded chitosan nanoparticles on ıntestinal microflora and morphology in Weaned piglets. Biol. Trace Elem. Res., 149(2):184-189.Zha, L., Zeng, J., Sun, S., Deng, H., Luo, H., Li, W. (2009). Chromium (III) nanoparticles affect hormone and ımmune responses in heat-stressed rats. Biol. Trace Elem. Res., 129: 157–169.Zhang, J.S., Wang, H., Yan, X., Zhang, L.D. (2004). Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci., 75: 447-459.Zhao, Y.C., Shu, T.X., Xiao, Y. X., Qiu, S.X., Pan, Q. J., Tang, X.Z. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broiler. Biol. Trace Elem. Res., 160(3): 361-367.Zhou, X., Wang, Y. (2011). Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult. Sci., 90: 680–686.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Erratum
Authors

Duygu Budak 0000-0001-9327-3830

Publication Date December 31, 2018
Submission Date December 9, 2018
Acceptance Date December 30, 2018
Published in Issue Year 2018 Volume: 3 Issue: 3

Cite

APA Budak, D. (2018). Hayvan beslemede nanoteknoloji. Journal of Advances in VetBio Science and Techniques, 3(3), 90-97. https://doi.org/10.31797/vetbio.494059

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download