Research Article
BibTex RIS Cite

The determination of effects of in ovo administered monosodium glutamate on the embryonic development of cervical region of medulla spinalis in chicken

Year 2021, Volume: 6 Issue: 3, 298 - 311, 31.12.2021
https://doi.org/10.31797/vetbio.1015200

Abstract

In this study, it was aimed to determine the effects of monosodium glutamate (MSG), one of the most widely used flavor enhancing food additives in the world, on the embryonic development of the spinal cord by histological and histometric methods. In this study, 410 fertile chicken eggs were used. Eggs were divided into five groups as control, distilled water, 0.12, 0.6 and 1.2 mg/g egg MSG, and injections were made into the yolk at the beginning of hatching. On the 15th, 18th and 21st days of incubation, medulla spinalis tissue samples were taken from the embryos obtained by opening 10 eggs from each group. After the tissue samples were fixed in 10% formalin, they were blocked in paraffin by routine histological methods. 6 μm thick sections taken from the blocks were stained with the triple staining method of Hematoxylin Eosin, Kluver-Barrera, Toluidine Blue, Periodic Acid Schiff and Crossmon. The preparations were examined under a light microscope and histometric measurements were made in the spinal cord tissue. As a result of histometric measurements made in embryos obtained on the 15th day, when the ratio of the surface area of the substantia grisea to the total surface area of the medulla spinalis observed in the sections, no significant difference was observed between the experimental and control groups in terms of histological organization. On the other hand, after histometric measurements, it was determined that this rate increased in the cervical segments of the embryos in the group treated with MSG at a dose of 1.2 mg/g eggs. In addition, as a result of histometric measurements made in the embryos obtained on the 18th day, it was observed that the ratio of the surface area of the substantia grisea observed in the sections to the total surface area of the medulla spinalis increased in the cervical segments of the embryos in the group treated with MSG at 0.6 mg/g egg dose. On the other hand, it was determined that the embryos in the group treated with MSG at a dose of 0.12 mg/g decreased in the same segments. It was determined that the ratio of the surface area of the substantia grisea to the total surface area of the medulla spinalis observed in the sections was increased especially in the cervical segments of the embryos in the group that received MSG at 0.6 and 1.2 mg/g egg doses. As a result of histometric measurements on the canalis centralis, it was determined that the transverse and longitudinal diameters of the canal were significantly lower in the MSG applied groups compared to the control and distilled water groups. As a result, it was observed that MSG given to fertile chicken eggs just before incubation caused differences in the medulla spinalis tissue compared to the control groups, as a result of light microscopic examinations and histometric measurements.

References

  • Abass, M., & Abd El-Haleem, M. (2011). Evaluation of monosodium glutamate induced neurotoxicity and nephrotoxicity in adult male albino rats. Journal of American Science, 7(8), 264-276.
  • Al-Qudsi, F., & Al-Jahdali, A. (2012). Effect of monosodium glutamate on chick embryo development. Journal of American Science, 8, 499-509.
  • AL-Sharkawy, A. N., Gab-Allah, M. S., El-Mashad, A.-B. I., & Khater, D. F. (2017). Pathological study on the effect of some food additives in male albino rats. Benha Veterinary Medical Journal, 33(2), 75-87.
  • Atay, E., Ertekin, A., Bozkurt, E., & Aslan, E. (2020). Impact of Bisphenol A on neural tube development in 48‐hr chicken embryos. Birth Defects Research, 112(17), 1386-1396.
  • Beas-Zárate, C., Pérez-Vega, M. A. I., & González-Burgos, I. (2002). Neonatal exposure to monosodium L-glutamate induces loss of neurons and cytoarchitectural alterations in hippocampal CA1 pyramidal neurons of adult rats. Brain Research, 952(2), 275-281.
  • Beyreuther, K., Biesalski, H. K., Fernstrom, J. D., Grimm, P., Hammes, W. P., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H., Walker, R. (2007). Consensus meeting: monosodium glutamate - an update. European journal of clinical nutrition, 61(3), 304-313. https://doi.org/10.1038/sj.ejcn.1602526
  • Brinkman, R., & Martin, A. (1973). A cytoarchitectonic study of the spinal cord of the domestic fowl Gallus gallus domesticus. I. Brachial region. Brain Research, 56, 43-62.
  • Chambille, I., & Serviere, J. (1993). Neurotoxic effects of neonatal injections of monosodium L‐glutamate (L‐MSG) on the retinal ganglion cell layer of the golden hamster: Anatomical and functional consequences on the circadian system. Journal of Comparative Neurology, 338(1), 67-82.
  • Çetin, S., & Özaydın, T. (2021). The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. Environmental Science and Pollution Research, 1-10.
  • Dief, A. E., Kamha, E. S., Baraka, A. M., & Elshorbagy, A. K. (2014). Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology, 42, 76-82.
  • Espinar, A., García‐Oliva, A., Isorna, E. M., Quesada, A., Prada, F. A., & Guerrero, J. M. (2000). Neuroprotection by melatonin from glutamate‐induced excitotoxicity during development of the cerebellum in the chick embryo. Journal of pineal research, 28(2), 81-88.
  • Firgany, A. E.-D. L., & Sarhan, N. R. (2020). Quercetin mitigates monosodium glutamate-induced excitotoxicity of the spinal cord motoneurons in aged rats via p38 MAPK inhibition. Acta Histochemica, 122(5), 151554.
  • Gad, F. A., Farouk, S. M., & Emam, M. A. (2021). Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environmental science and pollution research international, 28(2), 2379-2390. https://doi.org/10.1007/s11356-020-10674-7
  • Gao, J., Wu, J., Zhao, X., Zhang, W., Zhang, Y., & Zhang, Z. (1994). Transplacental neurotoxic effects of monosodium glutamate on structures and functions of specific brain areas of filial mice. Sheng li xue bao:[Acta physiologica Sinica], 46(1), 44-51.
  • Geha, R. S., Beiser, A., Ren, C., Patterson, R., Greenberger, P. A., Grammer, L. C., Ditto, A. M., Harris, K. E., Shaughnessy, M. A., Yarnold, P. R., Corren, J., Saxon, A. (2000). Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. The Journal of nutrition, 130(4S Suppl), 1058-1062. https://doi.org/10.1093/jn/130.4.1058S
  • Hajihasani, M. M., Soheili, V., Zirak, M. R., Sahebkar, A., & Shakeri, A. (2020). Natural products as safeguards against monosodium glutamate-induced toxicity. Iranian Journal of Basic Medical Sciences, 23(4), 416.
  • Hashem, H. E., El-Din Safwat, M. D., & Algaidi, S. (2012). The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). Journal of molecular histology, 43(2), 179-186. https://doi.org/10.1007/s10735-011-9380-0
  • Hegazy, A. A., Ibrahim, I. H., Sabry, R. M., & Abass, E. S. (2017). Effect of gestational exposure to monosodium glutamate on the structure of fetal rat lung. Anatomy Physiol. Biochem. Int. J, 3(2), 1-6.
  • Henry-Unaeze, H. N. (2017). Update on food safety of monosodium l-glutamate (MSG). Pathophysiology, 24(4), 243-249. https://doi.org/10.1016/j.pathophys.2017.08.001
  • Horvath, G., Reglodi, D., Vadasz, G., Farkas, J., & Kiss, P. (2013). Exposure to enriched environment decreases neurobehavioral deficits induced by neonatal glutamate toxicity. International journal of molecular sciences, 14(9), 19054-19066.
  • Ishikawa, K., Kubo, T., Shibanoki, S., Matsumoto, A., Hata, H., & Asai, S. (1997). Hippocampal degeneration inducing impairment of learning in rats: model of dementia? Behavioural Brain Research, 83(1), 39-44. https://doi.org/https://doi.org/10.1016/S0166-4328(97)86043-3
  • İzgi, M. (2019). Yumurtaya Verilen Propofol’ün Merkezi Sinir Sistemi Üzerindeki Embriyotoksik Etkilerinin Histolojik Yöntemlerle Belirlenmesi. Doktora Tezi, Sağlık Bilimleri Enstitüsü, Konya.
  • Jain, A., & Mathur, P. (2015). Evaluating hazards posed by additives in food-a review of studies adopting a risk assessment approach. Current Research in Nutrition and Food Science Journal, 3(3), 243-255.
  • Jelinek, R. (1977). Methods in prenatal toxicology. In: The chick embryotoxicity screening test (CHEST). Eds: Neubert D, Merker H, Kwasigrooh T. Stutgort: Georg Thieme, p. 381-6.
  • Kandil, B., & Sur, E. (2018). The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(3), 273-281.
  • Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of food properties, 20(sup2), 1807-1815.
  • Khadija, A., Ati, A., Mohammed, S., Saad, A., & Mohamed, H. (2009). Response of broiler chicks to dietary monosodium glutamate. Pakistan Veterinary Journal, 29(4), 165-168.
  • Kubo, T., Kohira, R., Okano, T., & Ishikawa, K. (1993). Neonatal glutamate can destroy the hippocampal CA1 structure and impair discrimination learning in rats. Brain Res, 616(1-2), 311-314.
  • López-Pérez, S. J., Ureña-Guerrero, M. E., & Morales-Villagrán, A. (2010). Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Research, 1317, 246-256.
  • Miko, A. M., Shehu, A. M., Bello, N., Allyu, I. A., Tasiu, I., Abdussalam A.O., & Isa, A. S. (2016). A morphometric study of the teratogenic effect of monosodium glutamate on the developing cerebral cortex of Wista Rat(Rattus norvegicus). Nigerian Journal of Scientific Research, 15(3): 240-244.
  • Necker, R. (2005). Embryonic development of choline acetyltransferase and nitric oxide synthase in the spinal cord of pigeons and chickens with special reference to the superficial dorsal horn. Anatomy and embryology, 210(2), 145-154.
  • Nguyen, L., Salanta, L.-C., Socaci, S., Tofana, M., Fărcaş, A., & Pop, C. (2020). A Mini Review About Monosodium Glutamate. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 77, 2020. https://doi.org/10.15835/buasvmcn-fst:2019.0029
  • Oladipo, I., Adebayo, E., & Kuye, O. (2015). Effects of monosodium glutamate in ovaries of female Sprague-Dawley rats. International Journal of Current Microbiology and Applied Sciences, 4(5), 737-745.
  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164(3880), 719-721.
  • Öznurlu, Y., Özaydın, T., Sur, E., & Özparlak, H. (2021). The effects of in ovo administered bisphenol A on tibial growth plate histology in chicken. Birth Defects Research doi.org/10.1002/bdr2.1925 (in press). https://doi.org/10.1002/bdr2.1925
  • Quines, C. B., Rosa, S. G., Da Rocha, J. T., Gai, B. M., Bortolatto, C. F., Duarte, M. M. M., & Nogueira, C. W. (2014). Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats. Life sciences, 107(1-2), 27-31.
  • Rivera-Carvantes, M. C., Jarero-Basulto, J. J., Feria-Velasco, A. I., Beas-Zárate, C., Navarro-Meza, M., González-López, M. B., Gudiño-Cabrera, G., García-Rodríguez, J. C. (2017). Changes in the expression level of MAPK pathway components induced by monosodium glutamate-administration produce neuronal death in the hippocampus from neonatal rats. Neuroscience, 365, 57-69.
  • Rivera-Cervantes, M. C., Castañeda-Arellano, R., Castro-Torres, R. D., Gudiño-Cabrera, G., y Velasco, A. I. F., Camins, A., & Beas-Zárate, C. (2015). P38 MAPK inhibition protects against glutamate neurotoxicity and modifies NMDA and AMPA receptor subunit expression. Journal of Molecular Neuroscience, 55(3), 596-608.
  • Roongruangchai, J., Viravud, Y., Plakornkul, V., Sripaoraya, K., Boonmark, W., & Roongruangchai, K. (2018). The Teratogenic Effects of Monosodium Glutamate (MSG) on the Development of Chick Embryos. Siriraj Medical Journal, 70(6), 514-522.
  • Rosa, S. G., Chagas, P. M., Pesarico, A. P., & Nogueira, C. W. (2018). Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicology and applied pharmacology, 351, 64-73.
  • Rosa, S. G., Quines, C. B., da Rocha, J. T., Bortolatto, C. F., Duarte, T., & Nogueira, C. W. (2015). Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. European journal of pharmacology, 758, 64-71. https://doi.org/10.1016/j.ejphar.2015.03.060
  • Sturkie P.D. (1986). Avian Physiology. Fourth edition, Springer-Verlag New York, Inc., p. 10-15.
  • Toth, L., Karcsu, S., Feledi, J., & Kreutzberg, G. (1987). Neurotoxicity of monosodium-L-glutamate in pregnant and fetal rats. Acta neuropathologica, 75(1), 16-22.
  • Williams, A., & Woessner, K. (2009). Monosodium glutamate ‘allergy’: menace or myth? Clinical & Experimental Allergy, 39(5), 640-646.
  • Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., Kouretas, D., Veskoukis, A., Tsoukalas, D., Engin, A. B., Aschner, M., Margină, D. (2019). A Review of the Alleged Health Hazards of Monosodium Glutamate. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1111-1134. https://doi.org/https://doi.org/10.1111/1541-4337.12448

Yumurtaya verilen monosodyum glutamat’ın tavuk embriyolarında medulla spinalisin servikal bölgesinin embriyonik gelişimi üzerindeki etkilerinin belirlenmesi

Year 2021, Volume: 6 Issue: 3, 298 - 311, 31.12.2021
https://doi.org/10.31797/vetbio.1015200

Abstract

Bu çalışmada, dünyada en yaygın kullanılan lezzet arttırıcı gıda katkı maddelerinden biri olan monosodyum glutamat (MSG)’ın, medulla spinalis’in embriyonik gelişimi üzerine etkilerinin histolojik ve histometrik yöntemler kullanılarak belirlenmesi amaçlanmaktadır. Çalışmada 410 adet döllü tavuk yumurtası kullanıldı. Yumurtalar kontrol, distile su, 0,12, 0,6 ve 1,2 mg/g yumurta MSG olmak üzere beş gruba ayrıldı ve enjeksiyonlar kuluçka başlangıcında yumurta sarısına yapıldı. Kuluçkanın 15, 18 ve 21. günlerinde her gruptan 10 yumurta açılarak elde edilen embriyolardan medulla spinalis doku örnekleri alındı. Doku örnekleri %10'luk formolde tespit edildikten sonra rutin histolojik yöntemlerle parafinde bloklandı. Bloklardan alınan 6 μm kalınlığındaki kesitler Hematoksilen Eozin, Kluver-Barrera, Toluidine Blue, Periyodik Asit Schiff ve Crossmon’ın üçlü boyama yöntemi ile boyandı. Preparatlar ışık mikroskop altında incelendi ve medulla spinalis dokusunda histometrik ölçümler yapıldı. 15. gün elde edilen embriyolarda yapılan histometrik ölçümler sonucunda substantia grisea yüzey alanının medulla spinalis’in kesitlerdeki toplam yüzey alanına oranı dikkate alındığında kontrol ve MSG grupları arasında anlamlı bir farklılık olmadığı tespit edildi. 18. günde substantia grisea yüzey alanının medulla spinalis’in kesitlerdeki toplam yüzey alanına oranı açısından özellikle 0,6 mg/g yumurta dozunda MSG uygulanan grupta kontrol grubuna kıyasla arttığı tespit edildi. 21. günde ise substantia grisea yüzey alanının medulla spinalis’in kesitlerdeki toplam yüzey alanına oranının 0,6 mg/g ve 1,2 mg/g dozunda MSG uygulanan grupta kontrol ve distile su grubu ile karşılaştırıldığında azalmış olduğu tespit edildi. Kanalis sentralis’in enine ve boyuna çapları üzerinde yapılan değerlendirmelerde ise MSG uygulanan gruplarda, kontrol ve distile su grubuna göre kanalis sentralis’in enine ve boyuna çaplarının azaldığı dikkati çekti. Medulla spinalisin ventral kornusunda bulunan motorik nöronlarda MSG uygulanan gruplarda 15., 18. ve 21. günlerde nekroz ve nöronofaji gibi histopatolojik değişikliklere rastlandı, MSG grupları kontrol ve distile su grupları ile karşılaştırıldığında motor nöronlardaki nekrozda önemli bir artış dikkati çekti (p<0.05). Sonuç olarak inkübasyondan hemen önce döllü tavuk yumurtasına verilen MSG’nin medulla spinalisin embriyonik gelişimini olumsuz yönde etkilediği ve motor nöronlarda nekroza neden olduğu tespit edilmiştir.

References

  • Abass, M., & Abd El-Haleem, M. (2011). Evaluation of monosodium glutamate induced neurotoxicity and nephrotoxicity in adult male albino rats. Journal of American Science, 7(8), 264-276.
  • Al-Qudsi, F., & Al-Jahdali, A. (2012). Effect of monosodium glutamate on chick embryo development. Journal of American Science, 8, 499-509.
  • AL-Sharkawy, A. N., Gab-Allah, M. S., El-Mashad, A.-B. I., & Khater, D. F. (2017). Pathological study on the effect of some food additives in male albino rats. Benha Veterinary Medical Journal, 33(2), 75-87.
  • Atay, E., Ertekin, A., Bozkurt, E., & Aslan, E. (2020). Impact of Bisphenol A on neural tube development in 48‐hr chicken embryos. Birth Defects Research, 112(17), 1386-1396.
  • Beas-Zárate, C., Pérez-Vega, M. A. I., & González-Burgos, I. (2002). Neonatal exposure to monosodium L-glutamate induces loss of neurons and cytoarchitectural alterations in hippocampal CA1 pyramidal neurons of adult rats. Brain Research, 952(2), 275-281.
  • Beyreuther, K., Biesalski, H. K., Fernstrom, J. D., Grimm, P., Hammes, W. P., Heinemann, U., Kempski, O., Stehle, P., Steinhart, H., Walker, R. (2007). Consensus meeting: monosodium glutamate - an update. European journal of clinical nutrition, 61(3), 304-313. https://doi.org/10.1038/sj.ejcn.1602526
  • Brinkman, R., & Martin, A. (1973). A cytoarchitectonic study of the spinal cord of the domestic fowl Gallus gallus domesticus. I. Brachial region. Brain Research, 56, 43-62.
  • Chambille, I., & Serviere, J. (1993). Neurotoxic effects of neonatal injections of monosodium L‐glutamate (L‐MSG) on the retinal ganglion cell layer of the golden hamster: Anatomical and functional consequences on the circadian system. Journal of Comparative Neurology, 338(1), 67-82.
  • Çetin, S., & Özaydın, T. (2021). The effects of bisphenol A given in ovo on bursa of Fabricius development and percentage of acid phosphatase positive lymphocyte in chicken. Environmental Science and Pollution Research, 1-10.
  • Dief, A. E., Kamha, E. S., Baraka, A. M., & Elshorbagy, A. K. (2014). Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology, 42, 76-82.
  • Espinar, A., García‐Oliva, A., Isorna, E. M., Quesada, A., Prada, F. A., & Guerrero, J. M. (2000). Neuroprotection by melatonin from glutamate‐induced excitotoxicity during development of the cerebellum in the chick embryo. Journal of pineal research, 28(2), 81-88.
  • Firgany, A. E.-D. L., & Sarhan, N. R. (2020). Quercetin mitigates monosodium glutamate-induced excitotoxicity of the spinal cord motoneurons in aged rats via p38 MAPK inhibition. Acta Histochemica, 122(5), 151554.
  • Gad, F. A., Farouk, S. M., & Emam, M. A. (2021). Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environmental science and pollution research international, 28(2), 2379-2390. https://doi.org/10.1007/s11356-020-10674-7
  • Gao, J., Wu, J., Zhao, X., Zhang, W., Zhang, Y., & Zhang, Z. (1994). Transplacental neurotoxic effects of monosodium glutamate on structures and functions of specific brain areas of filial mice. Sheng li xue bao:[Acta physiologica Sinica], 46(1), 44-51.
  • Geha, R. S., Beiser, A., Ren, C., Patterson, R., Greenberger, P. A., Grammer, L. C., Ditto, A. M., Harris, K. E., Shaughnessy, M. A., Yarnold, P. R., Corren, J., Saxon, A. (2000). Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. The Journal of nutrition, 130(4S Suppl), 1058-1062. https://doi.org/10.1093/jn/130.4.1058S
  • Hajihasani, M. M., Soheili, V., Zirak, M. R., Sahebkar, A., & Shakeri, A. (2020). Natural products as safeguards against monosodium glutamate-induced toxicity. Iranian Journal of Basic Medical Sciences, 23(4), 416.
  • Hashem, H. E., El-Din Safwat, M. D., & Algaidi, S. (2012). The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). Journal of molecular histology, 43(2), 179-186. https://doi.org/10.1007/s10735-011-9380-0
  • Hegazy, A. A., Ibrahim, I. H., Sabry, R. M., & Abass, E. S. (2017). Effect of gestational exposure to monosodium glutamate on the structure of fetal rat lung. Anatomy Physiol. Biochem. Int. J, 3(2), 1-6.
  • Henry-Unaeze, H. N. (2017). Update on food safety of monosodium l-glutamate (MSG). Pathophysiology, 24(4), 243-249. https://doi.org/10.1016/j.pathophys.2017.08.001
  • Horvath, G., Reglodi, D., Vadasz, G., Farkas, J., & Kiss, P. (2013). Exposure to enriched environment decreases neurobehavioral deficits induced by neonatal glutamate toxicity. International journal of molecular sciences, 14(9), 19054-19066.
  • Ishikawa, K., Kubo, T., Shibanoki, S., Matsumoto, A., Hata, H., & Asai, S. (1997). Hippocampal degeneration inducing impairment of learning in rats: model of dementia? Behavioural Brain Research, 83(1), 39-44. https://doi.org/https://doi.org/10.1016/S0166-4328(97)86043-3
  • İzgi, M. (2019). Yumurtaya Verilen Propofol’ün Merkezi Sinir Sistemi Üzerindeki Embriyotoksik Etkilerinin Histolojik Yöntemlerle Belirlenmesi. Doktora Tezi, Sağlık Bilimleri Enstitüsü, Konya.
  • Jain, A., & Mathur, P. (2015). Evaluating hazards posed by additives in food-a review of studies adopting a risk assessment approach. Current Research in Nutrition and Food Science Journal, 3(3), 243-255.
  • Jelinek, R. (1977). Methods in prenatal toxicology. In: The chick embryotoxicity screening test (CHEST). Eds: Neubert D, Merker H, Kwasigrooh T. Stutgort: Georg Thieme, p. 381-6.
  • Kandil, B., & Sur, E. (2018). The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(3), 273-281.
  • Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of food properties, 20(sup2), 1807-1815.
  • Khadija, A., Ati, A., Mohammed, S., Saad, A., & Mohamed, H. (2009). Response of broiler chicks to dietary monosodium glutamate. Pakistan Veterinary Journal, 29(4), 165-168.
  • Kubo, T., Kohira, R., Okano, T., & Ishikawa, K. (1993). Neonatal glutamate can destroy the hippocampal CA1 structure and impair discrimination learning in rats. Brain Res, 616(1-2), 311-314.
  • López-Pérez, S. J., Ureña-Guerrero, M. E., & Morales-Villagrán, A. (2010). Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Research, 1317, 246-256.
  • Miko, A. M., Shehu, A. M., Bello, N., Allyu, I. A., Tasiu, I., Abdussalam A.O., & Isa, A. S. (2016). A morphometric study of the teratogenic effect of monosodium glutamate on the developing cerebral cortex of Wista Rat(Rattus norvegicus). Nigerian Journal of Scientific Research, 15(3): 240-244.
  • Necker, R. (2005). Embryonic development of choline acetyltransferase and nitric oxide synthase in the spinal cord of pigeons and chickens with special reference to the superficial dorsal horn. Anatomy and embryology, 210(2), 145-154.
  • Nguyen, L., Salanta, L.-C., Socaci, S., Tofana, M., Fărcaş, A., & Pop, C. (2020). A Mini Review About Monosodium Glutamate. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 77, 2020. https://doi.org/10.15835/buasvmcn-fst:2019.0029
  • Oladipo, I., Adebayo, E., & Kuye, O. (2015). Effects of monosodium glutamate in ovaries of female Sprague-Dawley rats. International Journal of Current Microbiology and Applied Sciences, 4(5), 737-745.
  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 164(3880), 719-721.
  • Öznurlu, Y., Özaydın, T., Sur, E., & Özparlak, H. (2021). The effects of in ovo administered bisphenol A on tibial growth plate histology in chicken. Birth Defects Research doi.org/10.1002/bdr2.1925 (in press). https://doi.org/10.1002/bdr2.1925
  • Quines, C. B., Rosa, S. G., Da Rocha, J. T., Gai, B. M., Bortolatto, C. F., Duarte, M. M. M., & Nogueira, C. W. (2014). Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats. Life sciences, 107(1-2), 27-31.
  • Rivera-Carvantes, M. C., Jarero-Basulto, J. J., Feria-Velasco, A. I., Beas-Zárate, C., Navarro-Meza, M., González-López, M. B., Gudiño-Cabrera, G., García-Rodríguez, J. C. (2017). Changes in the expression level of MAPK pathway components induced by monosodium glutamate-administration produce neuronal death in the hippocampus from neonatal rats. Neuroscience, 365, 57-69.
  • Rivera-Cervantes, M. C., Castañeda-Arellano, R., Castro-Torres, R. D., Gudiño-Cabrera, G., y Velasco, A. I. F., Camins, A., & Beas-Zárate, C. (2015). P38 MAPK inhibition protects against glutamate neurotoxicity and modifies NMDA and AMPA receptor subunit expression. Journal of Molecular Neuroscience, 55(3), 596-608.
  • Roongruangchai, J., Viravud, Y., Plakornkul, V., Sripaoraya, K., Boonmark, W., & Roongruangchai, K. (2018). The Teratogenic Effects of Monosodium Glutamate (MSG) on the Development of Chick Embryos. Siriraj Medical Journal, 70(6), 514-522.
  • Rosa, S. G., Chagas, P. M., Pesarico, A. P., & Nogueira, C. W. (2018). Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicology and applied pharmacology, 351, 64-73.
  • Rosa, S. G., Quines, C. B., da Rocha, J. T., Bortolatto, C. F., Duarte, T., & Nogueira, C. W. (2015). Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. European journal of pharmacology, 758, 64-71. https://doi.org/10.1016/j.ejphar.2015.03.060
  • Sturkie P.D. (1986). Avian Physiology. Fourth edition, Springer-Verlag New York, Inc., p. 10-15.
  • Toth, L., Karcsu, S., Feledi, J., & Kreutzberg, G. (1987). Neurotoxicity of monosodium-L-glutamate in pregnant and fetal rats. Acta neuropathologica, 75(1), 16-22.
  • Williams, A., & Woessner, K. (2009). Monosodium glutamate ‘allergy’: menace or myth? Clinical & Experimental Allergy, 39(5), 640-646.
  • Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., Kouretas, D., Veskoukis, A., Tsoukalas, D., Engin, A. B., Aschner, M., Margină, D. (2019). A Review of the Alleged Health Hazards of Monosodium Glutamate. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1111-1134. https://doi.org/https://doi.org/10.1111/1541-4337.12448
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Veterinary Sciences
Journal Section Research Articles
Authors

Ferhan Bölükbaş 0000-0002-9744-0242

Yasemin Öznurlu 0000-0002-6296-3107

Publication Date December 31, 2021
Submission Date October 26, 2021
Acceptance Date December 30, 2021
Published in Issue Year 2021 Volume: 6 Issue: 3

Cite

APA Bölükbaş, F., & Öznurlu, Y. (2021). Yumurtaya verilen monosodyum glutamat’ın tavuk embriyolarında medulla spinalisin servikal bölgesinin embriyonik gelişimi üzerindeki etkilerinin belirlenmesi. Journal of Advances in VetBio Science and Techniques, 6(3), 298-311. https://doi.org/10.31797/vetbio.1015200

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download