Year 2024,
Volume: 9 Issue: 3, 224 - 232, 27.12.2024
Özgenur Hacıoğlu
,
Süheyla Türkyılmaz
References
- Abramov, V.M., Kosarev, I.V., Machulin, A.V., Deryusheva, E.I., Priputnevich, T.V., Panin, A.N., Chikileva, I.O., Abashina, T.N., Manoyan, A.M., Ahmetzyanova, A.A., & Ivanova, O.E. (2023). Ligilactobacillus salivarius 7247 strain: probiotic properties and anti-Salmonella effect with prebiotics. Antibiotics, 12(10), 1535. https://doi.org/10.3390/antibiotics12101535
- Alzahrani, K.O., Al-Reshoodi, F.M., Alshdokhi, E.A., Alhamed, A.S., Al Hadlaq, M.A., Mujallad, M.I., Mukhtar, L.E., Alsufyani, A.T., Alajlan, A.A., Al Rashidy, M.S., & Al Dawsari, M.J. (2023). Antimicrobial resistance and genomic characterization of Salmonella enterica isolates from chicken meat. Frontiers in Microbiology, 14, 1104164. https://doi.org/10.3389/fmicb.2023.1104164
- Arrioja-Bretón, D., Mani-López, E., Palou, E., & López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control, 115, 107286. https://doi.org/10.1016/j.foodcont.2020.107286.
- Ayeni, A. O., Ruppitsch, W., & Ayeni, F. A. (2019). Characterization of bacteria in Nigerian yogurt as promising alternative to antibiotics in gastrointestinal infections. Journal of Dietary Supplements, 16(2), 141-151. https://doi.org/10.1080/19390211.2018.1440684
- Bahri, F., Lejeune, A., Dubois-Dauphin, R., El Mejdoub, T., Boulahrouf, A., & Thonart, P. (2014). Characterization of Lactobacillus strains isolated from Algerian children faeces for their probiotic properties. African Journal of Microbiology Research, 8(3). https://doi.org/10.5897/AJMR2013.6404
- Cuevas-González, P. F., Liceaga, A. M., & Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: from concepts to applications. Food Research International, 136, 109502. https://doi.org/10.1016/j.foodres.2020.109502
- Divyashree, S., Anjali, P. G., Somashekaraiah, R., & Sreenivasa, M. Y. (2021). Probiotic properties of Lactobacillus casei–MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, 00672. https://doi.org/10.1016/j.btre.2021.e00672
- Dobreva, L., Danova, S., Georgieva, V., Georgieva, S., & Koprinarova, M. (2022). Anti-Salmonella activity of Lactobacilli from different habitats. Bulgarian Journal of Veterinary Medicine, 25(4). https://doi.org/10.15547/bjvm.2395
- EFSA: European Food Safety Authority, & European Centre for Disease Prevention and Control. (2022). The European Union one health 2021 zoonoses report. EFSA Journal, 20(12), e07666. https://doi.org/10.2903/j.efsa.2022.7666
- Evangelista, A.G., Corrêa, J.A.F., Dos Santos, J.V.G., Matté, E.H.C., Milek, M.M., Biauki, G.C., Costa, L.B., & Luciano, F.B. (2021). Cell-free supernatants produced by lactic acid bacteria reduce Salmonella population in vitro. Microbiology, 167(11), 001102. https://doi.org/10.1099/mic.0.001102
- Goa, T., Beyene, G., Mekonnen, M., & Gorems, K. (2022). Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected pathogenic bacteria. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/2076021
- Lando, V., Valduga, N. Z., & Moroni, L. S. (2023). Functional characterization of Lactobacilli strains with antimicrobial activity against Salmonella spp. and cell viability in fermented dairy product. Biocatalysis and Agricultural Biotechnology, 47, 102605. https://doi.org/10.1016/j.bcab.2023.102605
- Lee, J. Y., Kim, Y., Kim, J. I., Lee, H. Y., Moon, G. S., & Kang, C. H. (2022). Improvements in human keratinocytes and antimicrobial effect mediated by cell-free supernatants derived from probiotics. Fermentation, 8(7), 332. https://doi.org/10.3390/fermentation8070332
- Lim, H. S., Yeu, J. E., Hong, S. P., & Kang, M. S. (2018). Characterization of antibacterial cell-free supernatant from oral care probiotic Weissella cibaria, CMU. Molecules, 23(8), 1984. https://doi.org/10.3390/molecules23081984
- Mani‐López, E., Arrioja‐Bretón, D., & López‐Malo, A. (2022). The impacts of antimicrobial and antifungal activity of cell‐free supernatants from lactic acid bacteria in vitro and foods. Comprehensive Reviews in Food Science and Food Safety, 21(1), 604-641. https://doi.org/10.1111/1541-4337.12872
- Prudêncio, C. V., Mantovani, H. C., Cecon, P. R., Prieto, M., & Vanetti, M. C. D. (2016). Temperature and pH influence the susceptibility of Salmonella Typhimurium to nisin combined with EDTA. Food Control, 61, 248-253. https://doi.org/10.1016/j.foodcont.2015.09.042
- Shehata, M. G., Badr, A. N., El Sohaimy, S. A., Asker, D., & Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1), 71-78. https://doi.org/10.1016/j.aoas.2019.05.002
- Shi, S., Gong, L., Yu, H., He, G., Zhang, J., Han, Y., Liu, Y., Hu, J., Dong, J., Liu, J., & Zhao, K. (2022). Antagonistic activity and mechanism of Lactobacillus rhamnosus SQ511 against Salmonella enteritidis. 3 Biotech, 12(6), 126. https://doi.org/10.1007/s13205-022-03176-5
- Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Faseleh Jahromi, M., & Ho, Y. W. (2014). Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Research International, 2014. https://doi.org/10.1155/2014/927268
- Thorakkattu, P., Khanashyam, A.C., Shah, K., Babu, K.S., Mundanat, A.S., Deliephan, A., Deokar, G.S., Santivarangkna, C., & Nirmal, N.P. (2022). Postbiotics: current trends in food and pharmaceutical industry. Foods, 11(19), 3094. https://doi.org/10.3390/foods11193094
- Yilmaz, O., & Turkyilmaz, S. (2022). Investigation of the potential probiotic effects of lactic acid bacteria and cell-free supernatants against important pathogens leading to wound infections. Minerva Biotechnology and Biomolecular Research, 35(1), 41-53. https://doi.org/10.23736/S2724-542X.22.02935-2
- Zołkiewicz, J., Marzec, A., Ruszczynski, M., & Feleszko, W. (2020). Postbiotics: A step beyond pre-and probiotics. Nutrients, 12, 2189. https://doi.org/10.3390/nu12082189
Antimicrobial activity of Lactobacillus cell free supernatant against Salmonella Enteritidis and Infantis
Year 2024,
Volume: 9 Issue: 3, 224 - 232, 27.12.2024
Özgenur Hacıoğlu
,
Süheyla Türkyılmaz
Abstract
Cell-free supernatants (CFS) produced by lactic acid bacteria (LAB) have been characterized as natural antagonists of important pathogens, including Salmonella. Their bacteriostatic or bactericidal properties have been reported to serve as an alternative to antibiotics by minimizing problems related to antimicrobial resistance. This study aimed to evaluate the antimicrobial activity of CFS of 4 selected LAB strains belonging to Lacticaseibacillus paracasei (2 strain), Limosilactobacillus reuteri (1 strain), and Lacticaseibacillus rhamnosus (1 strain) species against Salmonella Enteritidis and Infantis serovars by the agar-well diffusion method. Cell-free culture media of lactic acid bacteria were used in either crude CFS (acidic) and neutralized form (NCFS) to also understand non-pH-dependent antimicrobial potential. All crude CFSs were found to exhibit antimicrobial activity against pathogens, ranging from moderate to strong. After pH neutralization, the crude CFS of L. paracasei (2 strains) lost their antimicrobial activity, except for the crude CFS produced by L. reuteri and L. rhamnosus. However, there was a significant decrease in the level of anti-Salmonella activity of L. rhamnosus NCFS. It was determined that L. reuteri NCFS continued to show antimicrobial activity at levels similar to the effects of crude CFS. It is thought that the antibacterial activity of L. reuteri and L. rhamnosus CFS determined in the research does not depend only on their acidity and that the chemical characterization of the postbiotics, which is the source of this antimicrobial activity, should be evaluated.
Ethical Statement
This study did not require ethical approval.
References
- Abramov, V.M., Kosarev, I.V., Machulin, A.V., Deryusheva, E.I., Priputnevich, T.V., Panin, A.N., Chikileva, I.O., Abashina, T.N., Manoyan, A.M., Ahmetzyanova, A.A., & Ivanova, O.E. (2023). Ligilactobacillus salivarius 7247 strain: probiotic properties and anti-Salmonella effect with prebiotics. Antibiotics, 12(10), 1535. https://doi.org/10.3390/antibiotics12101535
- Alzahrani, K.O., Al-Reshoodi, F.M., Alshdokhi, E.A., Alhamed, A.S., Al Hadlaq, M.A., Mujallad, M.I., Mukhtar, L.E., Alsufyani, A.T., Alajlan, A.A., Al Rashidy, M.S., & Al Dawsari, M.J. (2023). Antimicrobial resistance and genomic characterization of Salmonella enterica isolates from chicken meat. Frontiers in Microbiology, 14, 1104164. https://doi.org/10.3389/fmicb.2023.1104164
- Arrioja-Bretón, D., Mani-López, E., Palou, E., & López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control, 115, 107286. https://doi.org/10.1016/j.foodcont.2020.107286.
- Ayeni, A. O., Ruppitsch, W., & Ayeni, F. A. (2019). Characterization of bacteria in Nigerian yogurt as promising alternative to antibiotics in gastrointestinal infections. Journal of Dietary Supplements, 16(2), 141-151. https://doi.org/10.1080/19390211.2018.1440684
- Bahri, F., Lejeune, A., Dubois-Dauphin, R., El Mejdoub, T., Boulahrouf, A., & Thonart, P. (2014). Characterization of Lactobacillus strains isolated from Algerian children faeces for their probiotic properties. African Journal of Microbiology Research, 8(3). https://doi.org/10.5897/AJMR2013.6404
- Cuevas-González, P. F., Liceaga, A. M., & Aguilar-Toalá, J. E. (2020). Postbiotics and paraprobiotics: from concepts to applications. Food Research International, 136, 109502. https://doi.org/10.1016/j.foodres.2020.109502
- Divyashree, S., Anjali, P. G., Somashekaraiah, R., & Sreenivasa, M. Y. (2021). Probiotic properties of Lactobacillus casei–MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnology Reports, 32, 00672. https://doi.org/10.1016/j.btre.2021.e00672
- Dobreva, L., Danova, S., Georgieva, V., Georgieva, S., & Koprinarova, M. (2022). Anti-Salmonella activity of Lactobacilli from different habitats. Bulgarian Journal of Veterinary Medicine, 25(4). https://doi.org/10.15547/bjvm.2395
- EFSA: European Food Safety Authority, & European Centre for Disease Prevention and Control. (2022). The European Union one health 2021 zoonoses report. EFSA Journal, 20(12), e07666. https://doi.org/10.2903/j.efsa.2022.7666
- Evangelista, A.G., Corrêa, J.A.F., Dos Santos, J.V.G., Matté, E.H.C., Milek, M.M., Biauki, G.C., Costa, L.B., & Luciano, F.B. (2021). Cell-free supernatants produced by lactic acid bacteria reduce Salmonella population in vitro. Microbiology, 167(11), 001102. https://doi.org/10.1099/mic.0.001102
- Goa, T., Beyene, G., Mekonnen, M., & Gorems, K. (2022). Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma Town, Southwest Ethiopia, and evaluation of their antimicrobial activity against selected pathogenic bacteria. International Journal of Food Science, 2022. https://doi.org/10.1155/2022/2076021
- Lando, V., Valduga, N. Z., & Moroni, L. S. (2023). Functional characterization of Lactobacilli strains with antimicrobial activity against Salmonella spp. and cell viability in fermented dairy product. Biocatalysis and Agricultural Biotechnology, 47, 102605. https://doi.org/10.1016/j.bcab.2023.102605
- Lee, J. Y., Kim, Y., Kim, J. I., Lee, H. Y., Moon, G. S., & Kang, C. H. (2022). Improvements in human keratinocytes and antimicrobial effect mediated by cell-free supernatants derived from probiotics. Fermentation, 8(7), 332. https://doi.org/10.3390/fermentation8070332
- Lim, H. S., Yeu, J. E., Hong, S. P., & Kang, M. S. (2018). Characterization of antibacterial cell-free supernatant from oral care probiotic Weissella cibaria, CMU. Molecules, 23(8), 1984. https://doi.org/10.3390/molecules23081984
- Mani‐López, E., Arrioja‐Bretón, D., & López‐Malo, A. (2022). The impacts of antimicrobial and antifungal activity of cell‐free supernatants from lactic acid bacteria in vitro and foods. Comprehensive Reviews in Food Science and Food Safety, 21(1), 604-641. https://doi.org/10.1111/1541-4337.12872
- Prudêncio, C. V., Mantovani, H. C., Cecon, P. R., Prieto, M., & Vanetti, M. C. D. (2016). Temperature and pH influence the susceptibility of Salmonella Typhimurium to nisin combined with EDTA. Food Control, 61, 248-253. https://doi.org/10.1016/j.foodcont.2015.09.042
- Shehata, M. G., Badr, A. N., El Sohaimy, S. A., Asker, D., & Awad, T. S. (2019). Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences, 64(1), 71-78. https://doi.org/10.1016/j.aoas.2019.05.002
- Shi, S., Gong, L., Yu, H., He, G., Zhang, J., Han, Y., Liu, Y., Hu, J., Dong, J., Liu, J., & Zhao, K. (2022). Antagonistic activity and mechanism of Lactobacillus rhamnosus SQ511 against Salmonella enteritidis. 3 Biotech, 12(6), 126. https://doi.org/10.1007/s13205-022-03176-5
- Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Faseleh Jahromi, M., & Ho, Y. W. (2014). Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Research International, 2014. https://doi.org/10.1155/2014/927268
- Thorakkattu, P., Khanashyam, A.C., Shah, K., Babu, K.S., Mundanat, A.S., Deliephan, A., Deokar, G.S., Santivarangkna, C., & Nirmal, N.P. (2022). Postbiotics: current trends in food and pharmaceutical industry. Foods, 11(19), 3094. https://doi.org/10.3390/foods11193094
- Yilmaz, O., & Turkyilmaz, S. (2022). Investigation of the potential probiotic effects of lactic acid bacteria and cell-free supernatants against important pathogens leading to wound infections. Minerva Biotechnology and Biomolecular Research, 35(1), 41-53. https://doi.org/10.23736/S2724-542X.22.02935-2
- Zołkiewicz, J., Marzec, A., Ruszczynski, M., & Feleszko, W. (2020). Postbiotics: A step beyond pre-and probiotics. Nutrients, 12, 2189. https://doi.org/10.3390/nu12082189