Research Article
BibTex RIS Cite

The isolation of Bacillus anthracis specific lytic bacteriophages from the burial sites of animals which have died of anthrax and host susceptibility

Year 2025, Volume: 10 Issue: 2, 68 - 75, 31.08.2025
https://doi.org/10.31797/vetbio.1659483

Abstract

The aim of the this study was to isolate Bacillus anthracis-specific lytic bacteriophages from soil samples collected from the burial sites of animals that died from anthrax and stored by our department within the scope of previous studies and routine analyses and to determine the host susceptibility of the isolated phages. Eleven soil samples culture negative for B. anthracis were used for this. The logarithmic culture of B. anthracis Sterne 34F2 strain was used as host bacteria and the Gamma phage was used as reference phage. The host specificity of the phages obtained was determined using an in-house bacterial collection consisting of 112 virulent B. anthracis isolates (104 animal and 8 soil field isolates) and 5 reference strains of Bacillus group (B. anthracis Sterne 34F2, B. megaterium Pasteur Inst. 5117, B. subtilis ATCC 6633, B. cereus ATCC 11778, B. thuringiensis RSCC 380). As a result, 18 field phages were isolated specific to B. anthracis. Gamma phage and all the field phages showed complete lytic activity on B. anthracis Sterne 34F2 strain and 112 field B. anthracis strains; 16 of the field phages did not show any lytic activity on the Bacillus group strains other than the Sterne 34F2, while two phages coded SS and PB caused partial lysis on B. megaterium Pasteur Inst. 5117. This study is important as it involves the isolation of lytic phages with a narrow host specificity. Considering that lytic phages are more advantageous as therapeutic agents due to their self-replication and self-limiting properties that reveal automatic dosing patterns while lysing the host bacteria, the phages obtained from the current study may have the potential to be used as alternative diagnostic tools, therapeutic agents or environmentally friendly decontaminants in this regard.

References

  • Abshire, T. G., Brown, J. E., & Ezzell, J. W. (2005). Production and validation of the use of Gamma phage for identification of Bacillus anthracis. Journal of Clinical Microbiology, 43(9), 4780-4788. https://doi.org/10.1128/JCM.43.9.4780-4788.2005
  • Ackermann, H. W., Azizbekyan, R. R., Emadi Konjin, H. P., Lecadet, M. M., Seldin, L., & Yu, M. X. (1994). New Bacillus bacteriophage species. Archives of Virology, 135(3-4), 333-344. https://doi.org/10.1007/BF01310018
  • Alisky, J., Iczkowski, K., Rapoport, A., & Troitsky, N. (1998). Bacteriophages show promise as antimicrobial agents. Journal of Infection, 36(1), 5-15. https://doi.org/10.1016/s0163-4453(98)92874-2
  • Barrow, P. A., & Soothill, J. S. (1997). Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends in Microbiology, 5(7), 268-271. https://doi.org/10.1016/S0966-842X(97)01054-8
  • Bohannan, B. J. M., & Lenski, R. E. (2000). Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(4), 362-377. https://doi.org/10.1046/j.1461-0248.2000.00161.x
  • Bradley, E. (1964). The structure of some bacteriophages associated with male strains of Escherichia coli. Journal of General Microbiology, 35(3), 471-482. https://doi.org/10.1099/00221287-35-3-471
  • Braun, P., Wolfschläger, I., Reetz, L., Bachstein, L., Jacinto, A.C., Tocantins, C., Poppe, J., & Grass, G. (2020). Rapid microscopic detection of Bacillus anthracis by fluorescent receptor binding proteins of bacteriophages. Microorganisms, 8(6), 934. https://doi.org/10.3390/microorganisms8060934
  • Brown, E. R., Moody, M.D., Treece, E. L., & Smith, C. W. (1958). Differential diagnosis of Bacillus cereus, Bacillus anthracis, and Bacillus cereus var mycoides. Journal of Bacteriology, 75(5), 499-509. https://doi.org/10.1128/jb.75.5.499-509.1958
  • Brown, E. R., & Cherry, W. B. (1955). Specific identification of Bacillus anthracis by means of a variant bacteriophage. Journal of Infectious Diseases, 96(1), 34-39. https://doi.org/10.1093/infdis/96.1.34
  • Büyük, F., Şahin, M., Cooper, C., Çelebi, O., Gülmez Sağlam, A., Baillie, L., Çelik, E., Akça, D., & Otlu, S. (2015). The effect of prolonged storage on the virulence of isolates of Bacillus anthracis obtained from environmental and animal sources in the Kars Region of Turkey. FEMS Microbiology Letters, 362(13), fnv102. https://doi.org/10.1093/femsle/fnv102
  • Chen, F., Wang, K., Stewart, J., & Belas, R. (2006). Induction of multiple prophages from a marine bacterium: a genomic approach. Applied and Environmental Microbiology, 72(7), 4995-5001. https://doi.org/10.1128/AEM.00056-06
  • Corbel, M. J., & Thomas, E. L. (1976). Description of a new phage lytic for several Brucella species. Journal of Biological Standardization, 4(3), 195-201.
  • Davison, S., Couture-Tosi, E., Candela, T., Mock, M., & Fouet, A. (2005). Identification of the Bacillus anthracis (gamma) phage receptor. Journal of Bacteriology, 187(19), 6742–6749. https://doi.org/10.1128/JB.187.19.6742-6749.2005
  • de Jonge, P. A., Nobrega, F. L., Brouns, S. J. J., & Dutilh, B. E. (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends in Microbiology, 27(1), 51–63. https://doi.org/10.1016/j.tim.2018.08.006
  • Forrest, S., Ton, S., Sholes, S. L., Harrison, S., Plaut, R. D., Verratti, K., Wittekind, M., Ettehadieh, E., Necciai, B., Sozhamannan, S., & Grady, S. L. (2023). Genetic evidence for the interaction between Bacillus anthracis-encoded phage receptors and their cognate phage-encoded receptor binding proteins. Frontiers Microbiology, 14, 1278791. https://doi.org/10.3389/fmicb.2023.1278791
  • Fouts, D. E., Rasko, D. A., Cer, R. Z., Jiang, L., Federova, N. B., Shvartsbeyn, A., Vamathevan, J. J., Tallon. L., Althoff, R., Arbogast, T. S., Fadrosh, D. W., Read, T. D., & Gill, S. R. (2006). Sequencing Bacillus anthracis typing phages gamma and Cherry reveals a common ancestry. Journal of Bacteriology, 188(9), 3402-3408. https://doi.org/10.1128/jb.188.9.3402-3408.2006
  • Fulmer, P. A. (2003). Susceptibility of Bacillus anthracis to Gamma and Cherry bacteriophage. [Master thesis, Louisiana State University and Agricultural and Mechanical College]. LSU Master's Theses. 1100. https://doi.org/10.31390/gradschool_theses.1100
  • Gillis, A., & Mahillon, J. (2014). Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, present and future. Viruses, 6(7), 2623-2672. https://doi.org/10.3390/v6072623
  • Göller, P.C., Elsener, T., Lorgé, D., Radulovic, N., Bernardi, V., Naumann, A., Amri, N., Khatchatourova, E., Coutinho, F. H., Loessner, M. J., & Gómez-Sanz, E. (2021). Multi-species host range of staphylococcal phages isolated from wastewater. Nature Communications, 12, 6965. https://doi.org/10.1038/s41467-021-27037-6
  • Hassim, A., Lekota, K. E., van Dyk, D. S., Dekker, E. H., & van Heerden, H. (2020). A unique isolation of a lytic bacteriophage infected Bacillus anthracis isolate from Pafuri, South Africa. Microorganisms, 8(6), 932. https://doi.org/10.3390/microorganisms8060932
  • Hendrix, R. W., Smith, M. C. M., Burns, R. N., & Ford, M. P. (1999). Evolutionary relationships among diverse bacteriophages and prophages: All the world‘s a phage. Proceedings of the National Academy of Sciences, 96(5), 2192-2197. https://doi.org/10.1073/pnas.96.5.2192
  • Holtappels, D., Alfenas-Zerbini, P., & Koskella, B. (2023). Drivers and consequences of bacteriophage host range, FEMS Microbiology Reviews, 47(4), 1-10. https://doi.org/10.1093/femsre/fuad038
  • Hyman, P., & Abedon, S. T. (2010). Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology, 70, 217–48. https://doi.org/10.1016/S0065-2164(10)70007-1
  • Imaeda, T., & Rieber, M. (1968). Mitomycin C-induced Phage-like Particles in a Mutant of Mycobacterium tuberculosis BCG. Journal of Bacteriology, 96(2), 557-559. https://doi.org/10.1128/jb.96.2.557-559.1968
  • İnal, J. M. (2003). Phage Therapy: A reappraisal of bacteriophages as antibiotics. Archivum Immunologiae et Therapiae Experimentalis, 51(4), 237-244.
  • İnal, J. M., & Karunakaran, K. V. (1996). Phi 20, a temperate bacteriophage isolated from Bacillus anthracis exists as a plasmidial prophage. Current Microbiology, 32(4), 171-175. https://doi.org/10.1007/s002849900030
  • Kolton, C. B., Podnecky, N. L., Shadomy, S. V., Gee, J. E., & Hoffmaster, A. R. (2017). Bacillus anthracis Gamma phage lysis among soil bacteria: an update on test specificity. BMC Research Notes. 10(1), 598. https://doi.org/10.1186/s13104-017-2919-8
  • Kutter, E. (2009). Phage host range and efficiency of plating. Methods in Molecular Biology, 501(1), 141-9. https://doi.org/10.1007/978-1-60327-164-6_14
  • Letarov, A., & Kulikov, E. (2009). The bacteriophages in human- and animal body-associated microbial communities. Journal of Applied Microbiology, 107(1), 1–13. https://doi.org/10.1111/j.1365-2672.2009.04143.x
  • Li, L., Zhang, H., Jin, H., Guo, J., Liu, P., Yang, J., Wang, Z., Zhang, E., Yu, B., Shi, L., He, J., Wang, P., Wei, J., Zhong, Y., & Li, W. (2024). Identification and characterization of two Bacillus anthracis bacteriophages. Archives of Virology, 169(134), 1-11. https://doi.org/10.1007/s00705-024-06005-7
  • Liu, X., Wang, D., Pan, C., Feng, E., Fan, H., Li, M., Zhu, L., Tong, Y., & Wang, H. (2019). Genome sequence of Bacillus anthracis typing phage AP631. Archives of Virology, 164(3), 917–921. https://doi.org/10.1007/s00705-018-04135-3
  • Marston, C. K., Gee, J. E., Popovic, T., & Hofmaster, A. R. (2006). Molecular approaches to identify and diferentiate Bacillus anthracis from phenotypically similar Bacillus species isolates. BMC Microbiology, 6(22), 1-7. https://doi.org/10.1186/1471-2180-6-22
  • McCloy, E. W. (1951). Studies on a lysogenic Bacillus strain. I. A bacteriophage specific for Bacillus anthracis. Journal of Hygiene, 49(1), 114-125. http://www.jstor.org/stable/3860478
  • Mock, M., & Fouet, A. (2001). Anthrax. Annual Review of Microbiology, 55(1), 647-671. https://doi.org/10.1146/annurev.micro.55.1.647
  • Nakonieczna, A. , Rutyna, P., Fedorowicz, M., Kwiatek, M., Mizak, L., & Łobocka, M. (2022). Three novel bacteriophages, J5a, F16Ba, and z1a, specific for Bacillus anthracis, define a new clade of historical Wbeta phage relatives. Viruses, 14(213), 1-22. https://doi.org/10.3390/v14020213
  • Pilo, P., & Frey, J. (2011). Bacillus anthracis: Molecular taxonomy, population genetics, phylogeny and patho-evolution. Infection, Genetic, and Evolution, 11(6), 1218–1224. https://doi.org/10.1016/j.meegid.2011.05.013
  • Raya, R. R., & Hebert, E. M. (2009). Isolation of phage via induction of lysogens. Methods in Molecular Biology, 501(1), 23–32. https://doi.org/10.1007/978-1-60327-164-6_3
  • Ross, A., Ward, S., Hyman, P. (2016). More is better: selecting for broad host range bacteriophages. Frontiers in Microbiology, 7, 1–6. https://doi.org/10.3389/fmicb.2016.01352
  • Şahin, M., Laws, T. R., Dyson, H., Çelebi, O., Doğanay, M., Büyük, F., & Baillie, L. (2024). Soil sample analysis of Bacillus anthracis contaminated animal burial sites. Microorganisms. 12(10), 1-11. https://doi.org/10.3390/microorganisms12101944
  • Schuch, R., & Fischetti, V. A. (2009). The secret life of the anthrax agent Bacillus anthracis: Bacteriophage-mediated ecological adaptations. PLoS ONE, 4(8), e6532. https://doi.org/10.1371/journal.pone.0006532
  • Sozhamannan, S., Chute, M. D., McAfee, F. D., Fouts, D. E., Akmal, A., Galloway, D. R., Mateczun, A., Baillie, L. W., & Read, T. D. (2006). The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages. BMC Microbiology, 6(34), 1-11. https://doi.org/10.1186/1471-2180-6-34
  • Thingstad, T. F. (2000). Elements of theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceonography, 45(6), 1320-1328. https://doi.org/10.4319/lo.2000.45.6.1320
  • Titball, R. W., Turnbull, P. C. B., & Huston, P. A. (1991). The monitoring and detection of Bacillus anthracis in environment. Society for Applied Bacteriology Symposium Series, 20, 9-18.
  • Van Twest, R., & Kropinski, A. M. (2009). Bacteriophage enrichment from water and soil. Methods in Molecular Biology, 501(1), 15–21. https://doi.org/10.1007/978-1-60327-164-6_2.
  • Weinbauer, M. G., & Rassoulzadegan, F. (2004). Are viruses driving microbial diversification and diversity? Environmental Microbiology, 6(1), 1-11. https://doi.org/10.1046/j.1462-2920.2003.00539.x
There are 45 citations in total.

Details

Primary Language English
Subjects Veterinary Microbiology
Journal Section Research Articles
Authors

Elif Çelik 0000-0003-4531-3863

Aliye Gülmez Sağlam 0000-0002-7639-5075

Fatih Büyük 0000-0003-3278-4834

Salih Otlu 0000-0001-8490-2279

Mitat Şahin 0000-0003-0106-5677

Özgür Çelebi 0000-0002-3478-008X

Publication Date August 31, 2025
Submission Date March 17, 2025
Acceptance Date May 18, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Çelik, E., Gülmez Sağlam, A., Büyük, F., … Otlu, S. (2025). The isolation of Bacillus anthracis specific lytic bacteriophages from the burial sites of animals which have died of anthrax and host susceptibility. Journal of Advances in VetBio Science and Techniques, 10(2), 68-75. https://doi.org/10.31797/vetbio.1659483

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download