Research Article
BibTex RIS Cite

Investigation of Oxytetracycline and Enrofloxacin Residue in Beef Collected from Hatay Province

Year 2023, Volume: 2 Issue: 2, 8 - 16, 31.12.2023
https://doi.org/10.61262/vetjku.1392252

Abstract

Aim to study: This study purposed to investigate the residues of oxytetracycline and enrofloxacin in beef samples collected from different districts of Hatay province.
Material and methods: Fifty beef samples, each weighing 100 grams, were randomly acquired from butchers and markets. High-performance liquid chromatography was utilized for sample analysis.
Results: The maximum residue limits for red meat in the European Union and the Turkish Food Codex is 100 μg/kg for enrofloxacin, ciprofloxacin and oxytetracycline, while according to the Food and Agriculture Organization it is 200 μg/kg. Residues of oxytetracycline, enrofloxacin, and its metabolite ciprofloxacin were found below the maximum residue limits determined by the Turkish Food Codex and Food and Agriculture Organization in 5 (10%) out of 50 beef samples. In 90% of the samples, no residues of enrofloxacin, oxytetracycline, and ciprofloxacin were detected. However, enrofloxacin residues were found in 2 muscle samples (4%) at concentration of 47 and 57 µg/kg, and ciprofloxacin residues of 60 µg/kg. Additionally, oxytetracycline residues were detected in 2 samples (4%) at concentrations of 88 and 95 μg/kg.
Conclusion: It was observed that oxytetracycline and enrofloxacin are used in fattening in Hatay province and pre-slaughter waiting periods are adhered to.

References

  • Abbasi, M. M., Nemati, M., Babaei, H., & Ansarin, M. (2012). Solid-phase extraction and simultaneous determination of tetracycline residues in edible cattle tissues using an HPLC-FL method. Iranian journal of pharmaceutical research: International Journal of Production Research, 11(3), 781.
  • Aliu, H., & Sulaj, K. (2014). Screening of quinolone antibiotic residues in beef sold in Kosovo. Albanian Journal of Agricultural Sciences, 541.
  • Amagon, K., Olayemi, S., Akinleye, M. O., Awodele, O., & Silva, B. (2017). Antibiotic use in food animals: determination of enrofloxacin residue in chicken tissue. West African Journal of Pharmacy, 28(1) 98-106.
  • Baghani, A., Mesdaghinia, A., Rafieiyan, M., Soltan Dallal, M. M., & Douraghi, M. (2019). Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. Journal of Immunoassay and Immunochemistry, 40(3), 328-342.
  • Botsoglou, N. A. (2001). Stability of residues during food processing. U: Drug Residues in Foods: Pharmacology: Food Safety, and Analysis.
  • Bou-Mitri, C., Boutros, P. H., Makhlouf, J., Abou Jaoudeh, M., El Gerges, N., Fares, J. E. H., & Hassan, H. (2019). Exposure assessment of the consumers living in Mount Lebanon directorate to antibiotics through medication and red meat intake: A cross-sectional study. Veterinary World, 12(9), 1395. htpp://doi.org/10.14202/vetworld.2019.1395-1407
  • Center for Disease Control and Prevention. (2020). Estimates of Foodborne Illness in the United States. Retrieved from https://www.cdc.gov/foodborneburden/index.html.Accessed date: 20.05.2021.
  • Cinquina, A. L., Roberti, P., Giannetti, L., Longo, F., & Draisci, R. (2003). Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode-array detection: optimization and validation. Journal of Chromatography A, 987, 221-226. http://dx.doi.org/10.1016/S0021-9673(02)01800-9
  • Committee for Medicinal Products for Veterinary Use (CVMP). (2007). Public Statement on the Use of (Fluoro) Quinolones in Food-Producing Animals in the European Union: Development of Resistance and Impact on Human and Animal Health.
  • Council of the European Union. (1996). Council Directive 96/23/EC on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Official Journal of the European Communities, L 125/10−32.
  • Corum, O., Altan, F., Yildiz, R., Ider, M., Ok, M., & Uney, K. (2019). Pharmacokinetics of enrofloxacin and danofloxacin in premature calves. Journal of veterinary pharmacology and therapeutics, 42(6), 624-631. https://doi.org/10.1111/jvp.12787
  • Corum, O., Durna Corum, D., Terzi, E., & Uney, K. (2023). Pharmacokinetics, tissue residues, and withdrawal times of oxytetracycline in rainbow trout (Oncorhynchus mykiss) after single-and multiple-dose oral administration. Animals, 13(24), 3845. https://doi.org/10.3390/ani13243845
  • Council Regulation (EEC) No. 2377/90. (1990). Laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Official Journal of European Communities, L.224/1−8.
  • European Medicines Agency (EMA). (2002). Committee for Veterinary Medicinal Products. Enrofloxacin (Summary Report 4). The European Agency for the Evaluation of Medicinal Products.
  • European Medicines Agency (EMA). (2011). Committee for Medicinal Products for Human Use (CHMP); Guideline on Bioanalytical Method Validation, EMA/CHMP/EWP/192217/2009. Retrieved from https://www.EMA.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed date: 10.12.2021.
  • Er, B., Onurdağ, F. K., Demirhan, B., Özgacar, S. Ö., Öktem, A. B., & Abbasoğlu, U. (2013). Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poultry science, 92(8), 2212-2215. https://doi.org/10.3382/ps.2013-03072
  • Erdoğdu, A. T., Koçyiğit, Y., Özdemir, G., & Coşkun, Y. (2009). Determination of residues of tetracycline derived antibiotics in beef and sheep meat for consumption. Bornova Veteriner Bilimleri Dergisi, 31, 45.
  • Fàbrega, A., Sánchez-Céspedes, J., Soto, S., & Vila, J. (2008). Quinolone resistance in the food chain. International Journal of Antimicrobial Agents, 31(4), 307-315.
  • https://doi.org/10.1016/j.ijantimicag.2007.12.010
  • Food and Agriculture Organization (FAO). (2015). Maximum Residue Limits (MRLs) and Risk Management Recommendations for Residues of Veterinary Drugs in Foods CAC/MRL 2-2015 Updated as at the 38th Session of the Codex Alimentarius Commission (July 2015). Retrieved from https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/. Accessed date: 25.12.2021.
  • Jayalakshmi, K., Paramasivam, M., Sasikala, M., Tamilam, T. V., & Sumithra, A. (2017). Review on antibiotic residues in animal products and its impact on environments and human health. Journal of Entomology and Zoology Studies, 5(3), 1446-1451.
  • Kimera, Z. I., Mdegela, R. H., Mhaiki, C. J., Karimuribo, E. D., Mabiki, F., Nonga, H. E., & Mwesongo, J. (2015). Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania: research communication. Onderstepoort Journal of Veterinary Research, 82(1), 1-5.
  • Lee, H. J., Lee, M. H. & Ruy, P. D. (2001). Public health risks: chemical and antibiotic residues. Asian. Asian-Australasian Journal of Animal Science, 14, 402-413.
  • Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., & Li, K. (2008). Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry: An International Journal, 27(1), 80-86. https://doi.org/10.1897/07-080.1
  • Mashak, Z., Mojaddar Langroodi, A., Mehdizadeh, T., EbadiFathabad, A., & HoomanAsadi, A. (2022). Detection of quinolones residues in beef and chicken meat in hypermarkets of Urmia, Iran using ELISA. Iran Agricultural Research, 36(1), 73-77.
  • Muriuki, F. K., Ogara, W. O., Njeruh, F. M., & Mitema, E. S. (2001). Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya. Journal of Veterinary Science, 2(2), 97-101. https://doi.org/10.4142/jvs.2001.2.2.97
  • Nisha, A. R. (2008). Antibiotics residues A global health hazard. Veterinary World, 1(12): 375-377.
  • Olatoye, I. O., & Ehinmowo, A. A. (2010). Oxytetracycline residues in edible tissues of cattle slaughtered in Akure, Nigeria. Nigerian Veterinary Journal, 31(2). http://doi.org/10.4314/nvj.v31i2.68952
  • Omotoso, A. B., & Omojola, A. B. (2015). Fluoroquinolone residues in raw meat from open markets in Ibadan, Southwest, Nigeria. International Journal of Health, Animal Science and Food Safety, 2(1). https://doi.org/10.13130/2283-3927/4739
  • Ortelli, D., Spörri, A. S., & Edder, P. (2018). Veterinary drug residue in food of animal origin in Switzerland: a health concern?. Chimia, 72(10), 713-713.
  • https://doi.org/10.2533/chimia.2018.713
  • Pyun, C. W., Abd El‐Aty, A. M., Hashim, M. M. M., Shim, J. H., Lee, S. K., Choi, K. D., & Lee, C. (2008). Monitoring of streptomycin and dihydrostreptomycin residual levels in porcine meat press juice and muscle via solid‐phase fluorescence immunoassay and confirmatory analysis by liquid chromatography after post‐column derivatization. Biomedical Chromatography, 22(3), 254-259. https://doi.org/10.1002/bmc.920
  • Ramatla, T., Ngoma, L., Adetunji, M., & Mwanza, M. (2017). Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics, 6(4), 34.
  • https://doi.org/10.3390/antibiotics6040034
  • Regulation EC. (2010). 37/2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union, 15, 1-72.
  • Resmi Gazete. (2017). Sayı 30000 Türk Gıda Kodeksi Hayvansal Gıdalarda Bulunabilecek Farmakolojik Aktif Maddelerin Sınıflandırılması ve Maksimum Kalıntı Limitleri Yönetmeliği.
  • Sarker, Y. A., Hasan, M. M., Paul, T. K., Rashid, S. Z., Alam, M. N., & Sikder, M. H. (2018). Screening of antibiotic residues in chicken meat in Bangladesh by thin layer chromatography. Journal of Advenced Veterinary Research, 5(2), 140-145. http://doi.org/10.5455/javar.2018.e257
  • Sarmah, A. K., Meyer, M. T., Boxall, A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759.
  • https://doi.org/10.1016/j.chemosphere.2006.03.026
  • Sim, W. J., Lee, J. W., Lee, E. S., Shinb, S. K., & Hwang, S. R. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82, 179-186. https://doi.org/10.1016/j.chemosphere.2010.10.026.
  • Singh, S., Shukla, S., Tandia, N., Kumar, N. (2014). Antibiotic Residues: A Global Challenge. Pharma Science Monitor, 5, 184-197.
  • Sultan, I. A. (2014). Detection of enrofloxacin residue in livers of livestock animals obtained from a slaughterhouse in Mosul City. Journal of Veterinary Science and Technology, 5(2). http://doi.org/10.4172/2157-7579.1000168
  • Tadesse, T., & Tadesse, T. (2017). Public health impacts of antibiotic residues in foods of animal origin: A review. Public Health, 7(10).
  • Tekeli, I. O., Turk, E., Durna Corum, D., Corum, O., Kirgiz, F. C., & Uney, K. (2020). Pharmacokinetics, bioavailability and tissue residues of doxycycline in Japanese quails (Coturnix coturnix japonica) after oral administration. Food Additives & Contaminants: Part A, 37(12), 2082-2092. https://doi.org/10.1080/19440049.2020.1825827
  • Tollefson, L., & Miller, M. A. (2000). Antibiotic use in food animals: controlling the human health impact. Journal of AOAC international, 83(2), 245-254. https://doi.org/10.1093/jaoac/83.2.245
  • Turk, E., & Oguz, H. (2016). Investigation of tetracycline residues in fish caught from surrounding fish farms in Muğla district. Eurasian Journal of Veterinary Sciences, 32(2), 74-79. http://doi.org/10.15312/EurasianJVetSci.2016215515
  • Turkish Food Codex (TFC). (2017). Regulation on Classification of Pharmacological Active Substances that May Be Found in Animal Foods and Maximum Residue Limits. Issue number: 30000. Retrieved from https://www.resmigazete.gov.tr/eskiler/2017/03/20170307-4.html. Accessed date: 20.05.2021.
  • Uney, K., Terzi, E., Durna Corum, D., Ozdemir, R. C., Bilen, S., & Corum, O. (2021). Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of enrofloxacin following single oral administration of different doses in brown trout (Salmo trutta). Animals, 11(11), 3086. https://doi.org/10.3390/ani11113086
  • World Health Organization (2022). Use of antimicrobials outside human medicine and resultant antimicrobial resistance in humans: World Health Organization.
  • Öner, A. C., & Türksever, M. (2021). Van ilinde satışa sunulan etlerde tetrasiklin grubu antibiyotiklerin varlığının araştırılması. Van Sağlık Bilimleri Dergisi, 14(2), 163-169. https://doi.org/10.52976/vansaglik.834914
Year 2023, Volume: 2 Issue: 2, 8 - 16, 31.12.2023
https://doi.org/10.61262/vetjku.1392252

Abstract

References

  • Abbasi, M. M., Nemati, M., Babaei, H., & Ansarin, M. (2012). Solid-phase extraction and simultaneous determination of tetracycline residues in edible cattle tissues using an HPLC-FL method. Iranian journal of pharmaceutical research: International Journal of Production Research, 11(3), 781.
  • Aliu, H., & Sulaj, K. (2014). Screening of quinolone antibiotic residues in beef sold in Kosovo. Albanian Journal of Agricultural Sciences, 541.
  • Amagon, K., Olayemi, S., Akinleye, M. O., Awodele, O., & Silva, B. (2017). Antibiotic use in food animals: determination of enrofloxacin residue in chicken tissue. West African Journal of Pharmacy, 28(1) 98-106.
  • Baghani, A., Mesdaghinia, A., Rafieiyan, M., Soltan Dallal, M. M., & Douraghi, M. (2019). Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. Journal of Immunoassay and Immunochemistry, 40(3), 328-342.
  • Botsoglou, N. A. (2001). Stability of residues during food processing. U: Drug Residues in Foods: Pharmacology: Food Safety, and Analysis.
  • Bou-Mitri, C., Boutros, P. H., Makhlouf, J., Abou Jaoudeh, M., El Gerges, N., Fares, J. E. H., & Hassan, H. (2019). Exposure assessment of the consumers living in Mount Lebanon directorate to antibiotics through medication and red meat intake: A cross-sectional study. Veterinary World, 12(9), 1395. htpp://doi.org/10.14202/vetworld.2019.1395-1407
  • Center for Disease Control and Prevention. (2020). Estimates of Foodborne Illness in the United States. Retrieved from https://www.cdc.gov/foodborneburden/index.html.Accessed date: 20.05.2021.
  • Cinquina, A. L., Roberti, P., Giannetti, L., Longo, F., & Draisci, R. (2003). Determination of enrofloxacin and its metabolite ciprofloxacin in goat milk by high-performance liquid chromatography with diode-array detection: optimization and validation. Journal of Chromatography A, 987, 221-226. http://dx.doi.org/10.1016/S0021-9673(02)01800-9
  • Committee for Medicinal Products for Veterinary Use (CVMP). (2007). Public Statement on the Use of (Fluoro) Quinolones in Food-Producing Animals in the European Union: Development of Resistance and Impact on Human and Animal Health.
  • Council of the European Union. (1996). Council Directive 96/23/EC on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. Official Journal of the European Communities, L 125/10−32.
  • Corum, O., Altan, F., Yildiz, R., Ider, M., Ok, M., & Uney, K. (2019). Pharmacokinetics of enrofloxacin and danofloxacin in premature calves. Journal of veterinary pharmacology and therapeutics, 42(6), 624-631. https://doi.org/10.1111/jvp.12787
  • Corum, O., Durna Corum, D., Terzi, E., & Uney, K. (2023). Pharmacokinetics, tissue residues, and withdrawal times of oxytetracycline in rainbow trout (Oncorhynchus mykiss) after single-and multiple-dose oral administration. Animals, 13(24), 3845. https://doi.org/10.3390/ani13243845
  • Council Regulation (EEC) No. 2377/90. (1990). Laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Official Journal of European Communities, L.224/1−8.
  • European Medicines Agency (EMA). (2002). Committee for Veterinary Medicinal Products. Enrofloxacin (Summary Report 4). The European Agency for the Evaluation of Medicinal Products.
  • European Medicines Agency (EMA). (2011). Committee for Medicinal Products for Human Use (CHMP); Guideline on Bioanalytical Method Validation, EMA/CHMP/EWP/192217/2009. Retrieved from https://www.EMA.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf. Accessed date: 10.12.2021.
  • Er, B., Onurdağ, F. K., Demirhan, B., Özgacar, S. Ö., Öktem, A. B., & Abbasoğlu, U. (2013). Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poultry science, 92(8), 2212-2215. https://doi.org/10.3382/ps.2013-03072
  • Erdoğdu, A. T., Koçyiğit, Y., Özdemir, G., & Coşkun, Y. (2009). Determination of residues of tetracycline derived antibiotics in beef and sheep meat for consumption. Bornova Veteriner Bilimleri Dergisi, 31, 45.
  • Fàbrega, A., Sánchez-Céspedes, J., Soto, S., & Vila, J. (2008). Quinolone resistance in the food chain. International Journal of Antimicrobial Agents, 31(4), 307-315.
  • https://doi.org/10.1016/j.ijantimicag.2007.12.010
  • Food and Agriculture Organization (FAO). (2015). Maximum Residue Limits (MRLs) and Risk Management Recommendations for Residues of Veterinary Drugs in Foods CAC/MRL 2-2015 Updated as at the 38th Session of the Codex Alimentarius Commission (July 2015). Retrieved from https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/. Accessed date: 25.12.2021.
  • Jayalakshmi, K., Paramasivam, M., Sasikala, M., Tamilam, T. V., & Sumithra, A. (2017). Review on antibiotic residues in animal products and its impact on environments and human health. Journal of Entomology and Zoology Studies, 5(3), 1446-1451.
  • Kimera, Z. I., Mdegela, R. H., Mhaiki, C. J., Karimuribo, E. D., Mabiki, F., Nonga, H. E., & Mwesongo, J. (2015). Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania: research communication. Onderstepoort Journal of Veterinary Research, 82(1), 1-5.
  • Lee, H. J., Lee, M. H. & Ruy, P. D. (2001). Public health risks: chemical and antibiotic residues. Asian. Asian-Australasian Journal of Animal Science, 14, 402-413.
  • Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y., & Li, K. (2008). Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environmental Toxicology and Chemistry: An International Journal, 27(1), 80-86. https://doi.org/10.1897/07-080.1
  • Mashak, Z., Mojaddar Langroodi, A., Mehdizadeh, T., EbadiFathabad, A., & HoomanAsadi, A. (2022). Detection of quinolones residues in beef and chicken meat in hypermarkets of Urmia, Iran using ELISA. Iran Agricultural Research, 36(1), 73-77.
  • Muriuki, F. K., Ogara, W. O., Njeruh, F. M., & Mitema, E. S. (2001). Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya. Journal of Veterinary Science, 2(2), 97-101. https://doi.org/10.4142/jvs.2001.2.2.97
  • Nisha, A. R. (2008). Antibiotics residues A global health hazard. Veterinary World, 1(12): 375-377.
  • Olatoye, I. O., & Ehinmowo, A. A. (2010). Oxytetracycline residues in edible tissues of cattle slaughtered in Akure, Nigeria. Nigerian Veterinary Journal, 31(2). http://doi.org/10.4314/nvj.v31i2.68952
  • Omotoso, A. B., & Omojola, A. B. (2015). Fluoroquinolone residues in raw meat from open markets in Ibadan, Southwest, Nigeria. International Journal of Health, Animal Science and Food Safety, 2(1). https://doi.org/10.13130/2283-3927/4739
  • Ortelli, D., Spörri, A. S., & Edder, P. (2018). Veterinary drug residue in food of animal origin in Switzerland: a health concern?. Chimia, 72(10), 713-713.
  • https://doi.org/10.2533/chimia.2018.713
  • Pyun, C. W., Abd El‐Aty, A. M., Hashim, M. M. M., Shim, J. H., Lee, S. K., Choi, K. D., & Lee, C. (2008). Monitoring of streptomycin and dihydrostreptomycin residual levels in porcine meat press juice and muscle via solid‐phase fluorescence immunoassay and confirmatory analysis by liquid chromatography after post‐column derivatization. Biomedical Chromatography, 22(3), 254-259. https://doi.org/10.1002/bmc.920
  • Ramatla, T., Ngoma, L., Adetunji, M., & Mwanza, M. (2017). Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics, 6(4), 34.
  • https://doi.org/10.3390/antibiotics6040034
  • Regulation EC. (2010). 37/2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union, 15, 1-72.
  • Resmi Gazete. (2017). Sayı 30000 Türk Gıda Kodeksi Hayvansal Gıdalarda Bulunabilecek Farmakolojik Aktif Maddelerin Sınıflandırılması ve Maksimum Kalıntı Limitleri Yönetmeliği.
  • Sarker, Y. A., Hasan, M. M., Paul, T. K., Rashid, S. Z., Alam, M. N., & Sikder, M. H. (2018). Screening of antibiotic residues in chicken meat in Bangladesh by thin layer chromatography. Journal of Advenced Veterinary Research, 5(2), 140-145. http://doi.org/10.5455/javar.2018.e257
  • Sarmah, A. K., Meyer, M. T., Boxall, A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65, 725–759.
  • https://doi.org/10.1016/j.chemosphere.2006.03.026
  • Sim, W. J., Lee, J. W., Lee, E. S., Shinb, S. K., & Hwang, S. R. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82, 179-186. https://doi.org/10.1016/j.chemosphere.2010.10.026.
  • Singh, S., Shukla, S., Tandia, N., Kumar, N. (2014). Antibiotic Residues: A Global Challenge. Pharma Science Monitor, 5, 184-197.
  • Sultan, I. A. (2014). Detection of enrofloxacin residue in livers of livestock animals obtained from a slaughterhouse in Mosul City. Journal of Veterinary Science and Technology, 5(2). http://doi.org/10.4172/2157-7579.1000168
  • Tadesse, T., & Tadesse, T. (2017). Public health impacts of antibiotic residues in foods of animal origin: A review. Public Health, 7(10).
  • Tekeli, I. O., Turk, E., Durna Corum, D., Corum, O., Kirgiz, F. C., & Uney, K. (2020). Pharmacokinetics, bioavailability and tissue residues of doxycycline in Japanese quails (Coturnix coturnix japonica) after oral administration. Food Additives & Contaminants: Part A, 37(12), 2082-2092. https://doi.org/10.1080/19440049.2020.1825827
  • Tollefson, L., & Miller, M. A. (2000). Antibiotic use in food animals: controlling the human health impact. Journal of AOAC international, 83(2), 245-254. https://doi.org/10.1093/jaoac/83.2.245
  • Turk, E., & Oguz, H. (2016). Investigation of tetracycline residues in fish caught from surrounding fish farms in Muğla district. Eurasian Journal of Veterinary Sciences, 32(2), 74-79. http://doi.org/10.15312/EurasianJVetSci.2016215515
  • Turkish Food Codex (TFC). (2017). Regulation on Classification of Pharmacological Active Substances that May Be Found in Animal Foods and Maximum Residue Limits. Issue number: 30000. Retrieved from https://www.resmigazete.gov.tr/eskiler/2017/03/20170307-4.html. Accessed date: 20.05.2021.
  • Uney, K., Terzi, E., Durna Corum, D., Ozdemir, R. C., Bilen, S., & Corum, O. (2021). Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of enrofloxacin following single oral administration of different doses in brown trout (Salmo trutta). Animals, 11(11), 3086. https://doi.org/10.3390/ani11113086
  • World Health Organization (2022). Use of antimicrobials outside human medicine and resultant antimicrobial resistance in humans: World Health Organization.
  • Öner, A. C., & Türksever, M. (2021). Van ilinde satışa sunulan etlerde tetrasiklin grubu antibiyotiklerin varlığının araştırılması. Van Sağlık Bilimleri Dergisi, 14(2), 163-169. https://doi.org/10.52976/vansaglik.834914
There are 50 citations in total.

Details

Primary Language English
Subjects Veterinary Pharmacology
Journal Section Research Articles
Authors

Özlem Çiçek Doğan 0000-0002-5642-3593

Erdinç Türk 0000-0003-1735-1774

Duygu Durna Çorum 0000-0003-1567-991X

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date November 17, 2023
Acceptance Date December 22, 2023
Published in Issue Year 2023 Volume: 2 Issue: 2

Cite

APA Çiçek Doğan, Ö., Türk, E., & Durna Çorum, D. (2023). Investigation of Oxytetracycline and Enrofloxacin Residue in Beef Collected from Hatay Province. Veterinary Journal of Kastamonu University, 2(2), 8-16. https://doi.org/10.61262/vetjku.1392252