Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 2, 259 - 277, 30.06.2025
https://doi.org/10.29133/yyutbd.1479045

Abstract

Project Number

MBKM Faculty of Biologi 2023-2024

References

  • Afifah, A. S., Prajati, G., Adicita, Y., & Darwin. (2021). Variation of addition of nutrient (liquid NPK) in microalgae cultivation of Chlorella sp. J. Nat. Resour. Env., 11(1), 101-107. doi: 10.29244/jpsl.11.1.101-107
  • Agirman, N., & Cetin, A. K. (2017). Effects of nitrogen starvations on cell growth, protein, and lipid amount of Chlorella vulgaris. Fresen. Environ. Bull., 24(11), 3643-3648. doi: 10.20863/nsd.322614
  • Ahmed, E., Suzuki, K., & Nishida, T. (2023). Micro-and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential. Animals, 13(5), 796. doi: 10.3390/ani13050796
  • Al-Koussa, H., El Mais, N., Maalouf, H., Abi-Habib, R., & El-Sibai, M. (2020). Arginine deprivation: A potential therapeutic for cancer cell metastasis? A review. Cancer. Cell. Int., 20, 1-7. doi: 10.1186/s12935-020-01232-9
  • Amelia, R., Budiman, A., Nugroho, A. P., & Suyono, E. A. (2023). Influence of salinity on the growth and fatty acids production of Euglena sp. local strain from Dieng, Plateau, Indonesia. Squalen Bull. Mar. Fish. Postharvest Biotechnol., 18(3), 202-213. doi: 10.22207/JPAM.16.4.65
  • Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Ulrikh, E., Ivanova, S., Prosekov, A., & Dolganyuk, V. (2021). Production, purification, and study of the amino acid composition of microalgae proteins. Molecules., 26(9), 2767. doi: 10.3390/molecules26092767
  • Anjos, L., Estêvão, J., Infante, C., Mantecón, L., & Power, D. M. (2022). Extracting protein from microalgae (Tetraselmis chuii) for proteome analysis. MethodsX., 9(8), 101637. doi: 10.1016/j.mex.2022.101637
  • Bakku, R. K., Yamamoto, Y., Inaba, Y., Hiranuma, T., Gianino, E., Amarianto, L., Mahrous, W., Suzuki, H., & Suzuki, K. (2023). New insights into raceway cultivation of Euglena gracilis under long-term semi-continuous nitrogen starvation. Sci. Rep., 13(1), 7123. doi: 10.1038/s41598-023-34164-1
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of lipid extraction and purification. Can. J. Biochem. Phys., 37, 911–917. doi: 10.1139/o59-099.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv., 25(3), 294-306. doi: 10.1016/j.biotechadv.2007.02.001
  • Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technol., 100, 833–838. doi: 10.1016/j.biortech.2008.06.061
  • Demirbas, A. (2010). Use of algae as biofuel sources. Energ Convers Manage, 51, 2738-2749. doi: 10.1016/j.enconman.2010.06.010
  • Di Caprio, F. (2020). Methods to quantify biological contaminants in microalgae cultures. Algal Res., 49, 1-21. doi: 10.1016/j.algal.2020.101943
  • Erfianti, T., Maghfiroh, K. Q., Amelia, R., Kurnianto, D., Sadewo, B. R., Marno, S., Devi, I., Dewayanto, N., Budiman, A., & Suyono, E.A. (2023). Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng Peatland, Central Java, Indonesia, and their potential as bio-avtur. IOP. C. Ser. Earth. Env., 1151(1), 012059. doi: 10.1088/1755-1315/1151/1/012059
  • Fery, R. A., Nasution, S., & Siregar, S. H. (2020). The effect of ammonium sulfate (ZA) fertilizer concentration on the growth of microalgae population (Nannochlotopsis oculata). Asian J. Aquat. Sci., 3(2), 94-102. doi: 10.31258/ajoas.3.2.94-102
  • Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2011). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J. Appl. Phycol., 24(5), 989-1001. doi: 10.1007/s10811-011-9723-y
  • Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biot., 98, 2345-2356. doi: 10.1007/s00253-013-5442-4
  • Haris, N., Manan, H., Jusoh, M., Khatoon, H., Katayama, T., & Kasan, N. A. (2022). Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquacult Rep., 22, 100925. doi: doi.org/10.1016/j.aqrep.2021.100925
  • He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., & Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci. Rep., 7, 15526. doi: 10.1038/s41598-017-15667-0
  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technol., 113, 244-252. doi: 10.1016/j.biortech.2011.11.133
  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins. A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspective and advances. Plant J., 54(4), 621-639. doi: 10.1111/j.1365-313X.2008.03492.x
  • Hudaidah, S., M. Muhaemin, T., & Agustina. (2013). Strategy of Nannochloropsis against environment starvation: Population density and crude lipid contents. Maspari J: Mar. Sci. Res., 5(2), 64-68
  • Ingrisano, R., Tosato, E., Trost, P., Gurrieri, L., & Sparla, F. (2023). Proline, cysteine and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants, 12(19), 3410. doi: 10.3390/plants12193410
  • Irhamni, Elvitriana, & Viena, V. (2014). Cultivation of green microalgae at different nitrogen sources for lipid extraction. Jurnal Purifikasi, 14(2), 99-105. doi: 0.12962/j25983806.v14.i2.15
  • Jung, J. M., Kim, J. Y., Jung, S., Choi, Y. E., & Kwon, E. E. (2021). Quantitative study on lipid productivity of Euglena gracilis and its biodiesel production according to the cultivation conditions. J. Clean. Prod., 291, 125218. doi: 0.1016/j.jclepro.2020.125218
  • Khanra, A., Vasistha, S., Kumar, P., & Rai, M. P. (2020). Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. 3Biotech, 12, 331. doi: 10.1007/s13205-020-02323-0
  • Knothe, G. (2013). Production and properties of biodiesel from algal oils. In: Borowitzka, M. A. & Moheiman, N. R. (eds) Algae For Biofuels and Energy (pp. 207–221). Springer. doi: 10.1007/978-94-007-5479-9_12
  • Knoshaug, E. P., Gerritsen, A. T., Henard, C. A., & Guarnieri, M. T. (2020). In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering (pp. 51-59). Springer. doi: 10.1007/978-1-0716-0195-2_5
  • Kottuparambil, S., Thankamony, R. L., & Agusti, S. (2019). Euglena as a potential natural source of value-added metabolites. Algal Res., 37, 154-159. doi: 10.1016/J.ALGAL.2018.11.024
  • Krishnan, V., Uemura, Y., Thanh, N. T., Khalid, N. A., Osman, N., & Mansor, N. (2015). Three types of marine microalgae and Nannocholoropsis occulata cultivation for potential source of biomass production. J. Phys: Conf. Ser., 622(2015), 012034. doi: 10.1088/1742-6596/622/1/012034
  • Lachman, S., Mettler-Altmann, T., & Wacker, A. (2018). Nitrate or ammonium: Influences of nitrogen source on the physiology of a green alga. Ecol. Evol., 9, 1070-1082. doi: 10.1002/ece3.4790
  • Li, Y. X, Zhao, F. J., & Yu, D. D. (2015). Effect of nitrogen limitation on cell growth, lipid accumulation and gene expression in Chlorella sorokiniana. Braz. Arch. Biol. Techn., 58(3), 462-7. doi: 10.1590/S1516-8913201500391
  • Li, Y., Zhao, T., Sun, W., Gao, R., & Ma, G. (2024). Supplementation of alanine improves biomass accumulation and lipid production of Chlorella pyrenoidosa by increasing the respiratory and metabolic processes. J. Oceanol. Limnol., 42(2), 570-579. doi: 10.1007/s00343-023-3015-7
  • Liw, W. T., Xing, J., & Zhan, Z. (2019). Microwave Digestion and On-line Pre-Column Derivatization UHPLC Method for Analysis of Total Amino Acids in Feed. Singapore: Shimadzu (Asia Pacific) Pte. Ltd.
  • Maghfiroh, K. Q., Erfianti, T., Nurafifah, I., Amelia, R., Kurnianto, D., Sadewo, B. R., Maggandari, R., Aji, B. R., Budiman, A., & Suyono, E. A. (2023). The effect of photoperiodism on nutritional potency of Euglena sp. Indonesian strains. Malays. J. Nutr., 29(3), 453-466. doi: 10.31246/mjn-2023-0004
  • Mandal, S., Shurin, J. B., Efroymson, R. A., & Mathews, T. J. (2018). Functional divergence in nitrogen uptake rates explains the diversity-productivity relationship in microalgal communities. Ecosphere, 9, e02228. doi: 10.1002/ecs2.2228
  • Martin, S. A., Barsh, A. R., & Murphy, R. C. (2016). The discovery and early structural studies of arachidonic acid. J. Lipid Res., 57(7), 112601132. doi: doi.org/10.1194/jlr.R068072
  • Martinez-Ruiz, M., Vazquez, K., Losoya, L., Gonzalez, S., Robledo-Padilla, F., Aquines, O., Iqbal, H. M. N., & Parra-Saldivar, R. (2022). Microalgae growth rate multivariable mathematical model for biomass production. Heliyon, 9(1), e12540. doi: 10.1016/j.heliyon.2022.e12540
  • Menegol, T., Andressa, B. D., Eliseu, R., & Rosane, R. (2017). Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Sci. Tech., 37, 28-37. doi: 10.1590/1678-457X.13417
  • Molina, D., De Carvalho, J. C., Júnior, A. I. M., Faulds, C., Bertrand, E., & Soccol, C. R. (2019). Biological contamination and its chemical control in microalgal mass cultures. Appl. Microbiol. Biot., 103(23), 9345–9358. doi: 10.1007/s00253-019-10193-7
  • Muchammad, A., Kardena, E., & Rinanti, A. (2013). Effect of light intensity on carbon dioxide gas absorption by tropical microalgae Ankistrodesmus sp. in photobioreactor. J. Environ. Eng., 19(2), 103-116. doi: 10.5614/jtl.2013.19.2.1
  • Nigam, Subhasha, Monika P. R., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am. J. Biochem. Biotechnol., 7, 126-131. doi: 10.3844/ajbbsp.2011.126.131
  • Nurafifah, I., Hardianto, M. A., Erfianti, T., Amelia, R., Kurnianto, D., & Suyono, E. A. (2023). The effect of acidic pH on chlorophyll, carotenoids, and carotenoid derivatives of Euglena sp. as antioxidants. AACL Bioflux, 16(4), 2391-2401. doi: 10.7454/mss.v27i2.1506
  • Pareek, S., Sagar, N. A., Sharma, S., Kumar, V., Agarwal, T., Aguilar, G. A. G., & Yahia, E. M. (2017). Fruit and Vegetable Phytochemicals: Chemistry and Human Health (pp. 269-270). Wiley-Blackwell.
  • Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon, L. (2017). Kinetic model for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz model. J. Biotechnol, 24(3), 69-75. doi: 10.1016/j.jbiotec.2016.12.012
  • Pokorný, V., Štejfa, V., Havlín, J., Růžička, K., & Fulem, M. (2021). Heat capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine. Molecules, 26(14), 4298. doi: 10.3390/molecules26144298
  • Praveenkumar, R., Shameera, K., Mahalakshmi, G., Kbarsha, M. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass. Bioenerg., 37, 60–66. doi: 10.1016/j.biombioe.2011.12.035
  • Rahman, N. A., Katayama, T., Wahid, M. E. A., Kasan, N. A., Khatoon, H., Yamada, Y., & Takahashi, K. (2020). Taxon-and growth phase-specific antioxidant production by chlorophyte, bacillariophyta, and haptophyte strains isolated from tropical waters. Front. Bioeng. Biotechnol., 8, 581628. doi: 10.3389/fbioe.2020.581628
  • Rios, L. F., Klein, B. C., Luz Jr., L. F., Filho, R. M., & Maciel, M. R. W. (2014). Nitrogen starvation for lipid accumulation in the microalgae species Desmodesmus sp., Appl. Biochem. Biotechnol., 1-8. doi: 10.1007/s12010-014-1283-6
  • Roche. (2024). Lab FAQs Find a Quick Solution (3rd Ed). (pp. 98-100). Mannheim, Germany
  • Sobari, R., Susanto, A. B., Susilaningsih, D., & Rahma, D. Y. (2013). Kandungan lipid beberapa jenis sianobakteria laut sebagai bahan sumber penghasil biodiesel. J. Mar. Res., 2(1), 112-119. doi: 10.14710/jmr.v2i1.2063
  • Stephenson, A. L., Dennis, J. S., Howe, C. J., Scott, S. A., & Smith, A. G. (2010). Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels, 1(1), 47-58. doi: 10.4155/bfs.09.1
  • Stoessel, D., Stellmann, J. P., Willing, A., Behrens, B., Rosenkranz, S. C., Hodecker, S. C., Sturner, K. H., Reinhardt, S., Fleischer, S., Deuschle. C., Maetzler. W., Berg. D., Heesen, C., Walther, D., Schauer, N., Friese, M. A., & Pless, O. (2018). Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Front. Hum. Neurosci., 12, 226. doi: 10.3389/fnhum.2018.00226
  • Suyono, E. A., Haryadi, W., Zusron, M., Nuhamunada, M., Rahayu, S., & Nugroho, A. P. (2015). The effect of salinity on growth, dry weight and lipid content of the mixed microalgae culture isolated from glagah as biodiesel substrate. J. Life Sci., 9, 229-233. doi: 10.17265/1934-7391/2015.05.006
  • Tossavainen, M., Ilyass, U., Ollilainen, V., Valkonen, K., Ojalla, A., & Romantschuk, M. (2019). Influence of long term nitrogen limitation on lipid, protein and pigment production of Euglena gracilis in photoheterotrophic cultures. PerrJ, 7, e6624. doi:10.7717/peerj.6624. eCollection 2019
  • Toyama, T., Hanaoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M., & Mori, K. (2019). Enhanced production of biomass and lipids by Euglena gracilis via coculturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnol. Biofuels., 121, 1–12. doi: 10.1186/s13068-019-1544-2
  • Ulya, S., Sedjati, S., & Yudiati, E. (2018). Spirulina platensis protein content in culture media with different nitrate (KNO3) concentrations. Buletin Oseanografi Marina, 7(2), 98-102. doi: https://doi.org/10.14710/buloma.v7i2.20109
  • Vieira, K. R., Maroneze, M .M., Klein, B., Wagner, R., Queiroz, M. I., Jacob-Lopes, E., & Zepka, L. Q. (2021). The role of microalgae-based systems in the dynamics of odorous compounds in the meat processing industry. Part II – olfactometry and sensory relevance. Desalin. Water. Treat., 232, 16-25. doi: 10.5004/dwt.2021.27458
  • Wang, Y., Seppänen-Laakso, T., Rischer, H., & Wiebe, M. G. (2018). Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. Plos One, 13(4), 1-15. doi: 10.1371/journal.pone.0195329
  • Wardana, W. E., Tantri, D. H., Afifah, M. N. R., Aini, H. N., Siswanti, D. U., Maghfiroh, K. Q., Erfianti, T., Ameliani, R., Kurnianto, D., & Suyono, E. A. (2023). Effect of mercury stress on the growth and lipid content of Euglena sp. and Echinodorus palaefolius. Jurnal Biodjati, 8(1), 172:179. doi: 10.15575/biodjati.v8i1.23764
  • Widiyanto, A., Susilo, B., & Yulianingsih, R. (2014). Study on Cultivation Semi-Mass of Microalgae Chlorella sp on Ponds Area with Brackish Water Media (in District Rayunggumuk, Subdistrict Glagah, Lamongan). Jurnal Bioproses Komoditas Tropis, 2(1), 1-7.
  • Xie, W., Li, X., Xu, H., Chen, F., Cheng, K. W., Liu, H., & Liu, B. (2023). Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena gracilis to Produce Proteins. Mar. Drugs, 21(10), 519. doi: 10.3390/md21100519
  • Zarrinmehr, M. J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Kornaros, M., & Daneshvar, E. (2020). Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J.Aquat. Res., 46(2), 153-158. doi: 10.1016/j.ejar.2019.11.003
  • Zienkiewicz, A., Zienkiewicz, K., Poliner, E., Pulman, J. A., Du, Z. Y., Stefano, G., ... & Benning, C. (2020). The microalga Nannochloropsis during transition from quiescence to autotrophy in response to nitrogen availability. Plant physiology, 182(2), 819-839. doi: 10.1104/pp.19.00854

Characterization of Euglena sp. Amino Acids and Fatty Acid Methyl Ester (FAME) in Correlation to Ammonium Sulfate (NH₄)₂SO₄ Variation: Large-Scale Cultivation

Year 2025, Volume: 35 Issue: 2, 259 - 277, 30.06.2025
https://doi.org/10.29133/yyutbd.1479045

Abstract

Ammonium sulfate (NH₄)₂SO₄ as a source of N compounds in the growth medium of Euglena sp. has a major role in growth, vegetative cell formation, protein formation, lipid, and other organic compounds. Euglena sp. are microalgae that can grow in environments with acidic pH and high ammonia levels. In this study, variation of ammonium sulfate treatments at different concentrations includes low nitrogen level/F1 (0.5 g L-1), control (1 g L-1), and high nitrogen level/F2 (2 g L-1). This study aimed to define and quantify the amount of FAME, amino acids, growth, and biomass of Euglena sp. cultured on a large scale over a period of 16 days. FAME components were tested using Gas Chromatography Flame-Ionization Detector (GC-FID) and amino acids were characterized using Ultra Performance Liquid Chromatography (UPLC). The highest lipid content in F1 (0.209±0.0133 mg mL-1), while the highest protein content (23.1792±2.2607µg mL-1), and the highest biomass content (0.1444±0.0406 mg mL-1) found in F2. The SFA components in Euglena sp. elevated with low nitrogen treatment, with methyl arachidate (C20:0), methyl heneicosanoate (C21:0), and methyl palmitoleate (C16:1) with values of 18.76%; 13.54%; and 10.18%, respectively. The amino acid characterization generated 18 compounds, with the highest amino acid concentration of L-Arginine in the control group (15233.09 mg kg-1), and typical amino acids obtained were L-Alanine, L-Tyrosine, L-Histidine, L-Tryptophan, L-Aspartic acid, and L-Serine (VIP score>1).

Ethical Statement

Ethical approval is not required for this study as it is not an animal or human study

Supporting Institution

Laboratorium Penelitian dan Pengujian Terpadu (LPPT) Universitas Gadjah Mada, Saraswanti Indo Genetech

Project Number

MBKM Faculty of Biologi 2023-2024

Thanks

The authors are grateful to Laboratorium Penelitian dan Pengujian Terpadu (LPPT) Universitas Gadjah Mada for characterization of Fatty Acid Methyl Ester (FAME) and Saraswanti Indo Genetech for characterization of Amino Acid. Authors are also thankful to the Laboratory of Biotechnology and Fasilitas Penelitian Bersama (FALITMA), Faculty of Biology, Universitas Gadjah Mada for allowing us to use the laboratory facilities.

References

  • Afifah, A. S., Prajati, G., Adicita, Y., & Darwin. (2021). Variation of addition of nutrient (liquid NPK) in microalgae cultivation of Chlorella sp. J. Nat. Resour. Env., 11(1), 101-107. doi: 10.29244/jpsl.11.1.101-107
  • Agirman, N., & Cetin, A. K. (2017). Effects of nitrogen starvations on cell growth, protein, and lipid amount of Chlorella vulgaris. Fresen. Environ. Bull., 24(11), 3643-3648. doi: 10.20863/nsd.322614
  • Ahmed, E., Suzuki, K., & Nishida, T. (2023). Micro-and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential. Animals, 13(5), 796. doi: 10.3390/ani13050796
  • Al-Koussa, H., El Mais, N., Maalouf, H., Abi-Habib, R., & El-Sibai, M. (2020). Arginine deprivation: A potential therapeutic for cancer cell metastasis? A review. Cancer. Cell. Int., 20, 1-7. doi: 10.1186/s12935-020-01232-9
  • Amelia, R., Budiman, A., Nugroho, A. P., & Suyono, E. A. (2023). Influence of salinity on the growth and fatty acids production of Euglena sp. local strain from Dieng, Plateau, Indonesia. Squalen Bull. Mar. Fish. Postharvest Biotechnol., 18(3), 202-213. doi: 10.22207/JPAM.16.4.65
  • Andreeva, A., Budenkova, E., Babich, O., Sukhikh, S., Ulrikh, E., Ivanova, S., Prosekov, A., & Dolganyuk, V. (2021). Production, purification, and study of the amino acid composition of microalgae proteins. Molecules., 26(9), 2767. doi: 10.3390/molecules26092767
  • Anjos, L., Estêvão, J., Infante, C., Mantecón, L., & Power, D. M. (2022). Extracting protein from microalgae (Tetraselmis chuii) for proteome analysis. MethodsX., 9(8), 101637. doi: 10.1016/j.mex.2022.101637
  • Bakku, R. K., Yamamoto, Y., Inaba, Y., Hiranuma, T., Gianino, E., Amarianto, L., Mahrous, W., Suzuki, H., & Suzuki, K. (2023). New insights into raceway cultivation of Euglena gracilis under long-term semi-continuous nitrogen starvation. Sci. Rep., 13(1), 7123. doi: 10.1038/s41598-023-34164-1
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of lipid extraction and purification. Can. J. Biochem. Phys., 37, 911–917. doi: 10.1139/o59-099.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol Adv., 25(3), 294-306. doi: 10.1016/j.biotechadv.2007.02.001
  • Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technol., 100, 833–838. doi: 10.1016/j.biortech.2008.06.061
  • Demirbas, A. (2010). Use of algae as biofuel sources. Energ Convers Manage, 51, 2738-2749. doi: 10.1016/j.enconman.2010.06.010
  • Di Caprio, F. (2020). Methods to quantify biological contaminants in microalgae cultures. Algal Res., 49, 1-21. doi: 10.1016/j.algal.2020.101943
  • Erfianti, T., Maghfiroh, K. Q., Amelia, R., Kurnianto, D., Sadewo, B. R., Marno, S., Devi, I., Dewayanto, N., Budiman, A., & Suyono, E.A. (2023). Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng Peatland, Central Java, Indonesia, and their potential as bio-avtur. IOP. C. Ser. Earth. Env., 1151(1), 012059. doi: 10.1088/1755-1315/1151/1/012059
  • Fery, R. A., Nasution, S., & Siregar, S. H. (2020). The effect of ammonium sulfate (ZA) fertilizer concentration on the growth of microalgae population (Nannochlotopsis oculata). Asian J. Aquat. Sci., 3(2), 94-102. doi: 10.31258/ajoas.3.2.94-102
  • Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2011). Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J. Appl. Phycol., 24(5), 989-1001. doi: 10.1007/s10811-011-9723-y
  • Griffiths, M. J., Van Hille, R. P., & Harrison, S. T. L. (2014). The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biot., 98, 2345-2356. doi: 10.1007/s00253-013-5442-4
  • Haris, N., Manan, H., Jusoh, M., Khatoon, H., Katayama, T., & Kasan, N. A. (2022). Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquacult Rep., 22, 100925. doi: doi.org/10.1016/j.aqrep.2021.100925
  • He, M., Yan, Y., Pei, F., Wu, M., Gebreluel, T., Zou, S., & Wang, C. (2017). Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci. Rep., 7, 15526. doi: 10.1038/s41598-017-15667-0
  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technol., 113, 244-252. doi: 10.1016/j.biortech.2011.11.133
  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins. A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspective and advances. Plant J., 54(4), 621-639. doi: 10.1111/j.1365-313X.2008.03492.x
  • Hudaidah, S., M. Muhaemin, T., & Agustina. (2013). Strategy of Nannochloropsis against environment starvation: Population density and crude lipid contents. Maspari J: Mar. Sci. Res., 5(2), 64-68
  • Ingrisano, R., Tosato, E., Trost, P., Gurrieri, L., & Sparla, F. (2023). Proline, cysteine and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants, 12(19), 3410. doi: 10.3390/plants12193410
  • Irhamni, Elvitriana, & Viena, V. (2014). Cultivation of green microalgae at different nitrogen sources for lipid extraction. Jurnal Purifikasi, 14(2), 99-105. doi: 0.12962/j25983806.v14.i2.15
  • Jung, J. M., Kim, J. Y., Jung, S., Choi, Y. E., & Kwon, E. E. (2021). Quantitative study on lipid productivity of Euglena gracilis and its biodiesel production according to the cultivation conditions. J. Clean. Prod., 291, 125218. doi: 0.1016/j.jclepro.2020.125218
  • Khanra, A., Vasistha, S., Kumar, P., & Rai, M. P. (2020). Role of C/N ratio on microalgae growth in mixotrophy and incorporation of titanium nanoparticles for cell flocculation and lipid enhancement in economical biodiesel application. 3Biotech, 12, 331. doi: 10.1007/s13205-020-02323-0
  • Knothe, G. (2013). Production and properties of biodiesel from algal oils. In: Borowitzka, M. A. & Moheiman, N. R. (eds) Algae For Biofuels and Energy (pp. 207–221). Springer. doi: 10.1007/978-94-007-5479-9_12
  • Knoshaug, E. P., Gerritsen, A. T., Henard, C. A., & Guarnieri, M. T. (2020). In: Himmel, M., Bomble, Y. (eds) Metabolic Pathway Engineering (pp. 51-59). Springer. doi: 10.1007/978-1-0716-0195-2_5
  • Kottuparambil, S., Thankamony, R. L., & Agusti, S. (2019). Euglena as a potential natural source of value-added metabolites. Algal Res., 37, 154-159. doi: 10.1016/J.ALGAL.2018.11.024
  • Krishnan, V., Uemura, Y., Thanh, N. T., Khalid, N. A., Osman, N., & Mansor, N. (2015). Three types of marine microalgae and Nannocholoropsis occulata cultivation for potential source of biomass production. J. Phys: Conf. Ser., 622(2015), 012034. doi: 10.1088/1742-6596/622/1/012034
  • Lachman, S., Mettler-Altmann, T., & Wacker, A. (2018). Nitrate or ammonium: Influences of nitrogen source on the physiology of a green alga. Ecol. Evol., 9, 1070-1082. doi: 10.1002/ece3.4790
  • Li, Y. X, Zhao, F. J., & Yu, D. D. (2015). Effect of nitrogen limitation on cell growth, lipid accumulation and gene expression in Chlorella sorokiniana. Braz. Arch. Biol. Techn., 58(3), 462-7. doi: 10.1590/S1516-8913201500391
  • Li, Y., Zhao, T., Sun, W., Gao, R., & Ma, G. (2024). Supplementation of alanine improves biomass accumulation and lipid production of Chlorella pyrenoidosa by increasing the respiratory and metabolic processes. J. Oceanol. Limnol., 42(2), 570-579. doi: 10.1007/s00343-023-3015-7
  • Liw, W. T., Xing, J., & Zhan, Z. (2019). Microwave Digestion and On-line Pre-Column Derivatization UHPLC Method for Analysis of Total Amino Acids in Feed. Singapore: Shimadzu (Asia Pacific) Pte. Ltd.
  • Maghfiroh, K. Q., Erfianti, T., Nurafifah, I., Amelia, R., Kurnianto, D., Sadewo, B. R., Maggandari, R., Aji, B. R., Budiman, A., & Suyono, E. A. (2023). The effect of photoperiodism on nutritional potency of Euglena sp. Indonesian strains. Malays. J. Nutr., 29(3), 453-466. doi: 10.31246/mjn-2023-0004
  • Mandal, S., Shurin, J. B., Efroymson, R. A., & Mathews, T. J. (2018). Functional divergence in nitrogen uptake rates explains the diversity-productivity relationship in microalgal communities. Ecosphere, 9, e02228. doi: 10.1002/ecs2.2228
  • Martin, S. A., Barsh, A. R., & Murphy, R. C. (2016). The discovery and early structural studies of arachidonic acid. J. Lipid Res., 57(7), 112601132. doi: doi.org/10.1194/jlr.R068072
  • Martinez-Ruiz, M., Vazquez, K., Losoya, L., Gonzalez, S., Robledo-Padilla, F., Aquines, O., Iqbal, H. M. N., & Parra-Saldivar, R. (2022). Microalgae growth rate multivariable mathematical model for biomass production. Heliyon, 9(1), e12540. doi: 10.1016/j.heliyon.2022.e12540
  • Menegol, T., Andressa, B. D., Eliseu, R., & Rosane, R. (2017). Effect of temperature and nitrogen concentration on biomass composition of Heterochlorella luteoviridis. Food Sci. Tech., 37, 28-37. doi: 10.1590/1678-457X.13417
  • Molina, D., De Carvalho, J. C., Júnior, A. I. M., Faulds, C., Bertrand, E., & Soccol, C. R. (2019). Biological contamination and its chemical control in microalgal mass cultures. Appl. Microbiol. Biot., 103(23), 9345–9358. doi: 10.1007/s00253-019-10193-7
  • Muchammad, A., Kardena, E., & Rinanti, A. (2013). Effect of light intensity on carbon dioxide gas absorption by tropical microalgae Ankistrodesmus sp. in photobioreactor. J. Environ. Eng., 19(2), 103-116. doi: 10.5614/jtl.2013.19.2.1
  • Nigam, Subhasha, Monika P. R., & Sharma, R. (2011). Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am. J. Biochem. Biotechnol., 7, 126-131. doi: 10.3844/ajbbsp.2011.126.131
  • Nurafifah, I., Hardianto, M. A., Erfianti, T., Amelia, R., Kurnianto, D., & Suyono, E. A. (2023). The effect of acidic pH on chlorophyll, carotenoids, and carotenoid derivatives of Euglena sp. as antioxidants. AACL Bioflux, 16(4), 2391-2401. doi: 10.7454/mss.v27i2.1506
  • Pareek, S., Sagar, N. A., Sharma, S., Kumar, V., Agarwal, T., Aguilar, G. A. G., & Yahia, E. M. (2017). Fruit and Vegetable Phytochemicals: Chemistry and Human Health (pp. 269-270). Wiley-Blackwell.
  • Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon, L. (2017). Kinetic model for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz model. J. Biotechnol, 24(3), 69-75. doi: 10.1016/j.jbiotec.2016.12.012
  • Pokorný, V., Štejfa, V., Havlín, J., Růžička, K., & Fulem, M. (2021). Heat capacities of l-Histidine, l-Phenylalanine, l-Proline, l-Tryptophan and l-Tyrosine. Molecules, 26(14), 4298. doi: 10.3390/molecules26144298
  • Praveenkumar, R., Shameera, K., Mahalakshmi, G., Kbarsha, M. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass. Bioenerg., 37, 60–66. doi: 10.1016/j.biombioe.2011.12.035
  • Rahman, N. A., Katayama, T., Wahid, M. E. A., Kasan, N. A., Khatoon, H., Yamada, Y., & Takahashi, K. (2020). Taxon-and growth phase-specific antioxidant production by chlorophyte, bacillariophyta, and haptophyte strains isolated from tropical waters. Front. Bioeng. Biotechnol., 8, 581628. doi: 10.3389/fbioe.2020.581628
  • Rios, L. F., Klein, B. C., Luz Jr., L. F., Filho, R. M., & Maciel, M. R. W. (2014). Nitrogen starvation for lipid accumulation in the microalgae species Desmodesmus sp., Appl. Biochem. Biotechnol., 1-8. doi: 10.1007/s12010-014-1283-6
  • Roche. (2024). Lab FAQs Find a Quick Solution (3rd Ed). (pp. 98-100). Mannheim, Germany
  • Sobari, R., Susanto, A. B., Susilaningsih, D., & Rahma, D. Y. (2013). Kandungan lipid beberapa jenis sianobakteria laut sebagai bahan sumber penghasil biodiesel. J. Mar. Res., 2(1), 112-119. doi: 10.14710/jmr.v2i1.2063
  • Stephenson, A. L., Dennis, J. S., Howe, C. J., Scott, S. A., & Smith, A. G. (2010). Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels, 1(1), 47-58. doi: 10.4155/bfs.09.1
  • Stoessel, D., Stellmann, J. P., Willing, A., Behrens, B., Rosenkranz, S. C., Hodecker, S. C., Sturner, K. H., Reinhardt, S., Fleischer, S., Deuschle. C., Maetzler. W., Berg. D., Heesen, C., Walther, D., Schauer, N., Friese, M. A., & Pless, O. (2018). Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Front. Hum. Neurosci., 12, 226. doi: 10.3389/fnhum.2018.00226
  • Suyono, E. A., Haryadi, W., Zusron, M., Nuhamunada, M., Rahayu, S., & Nugroho, A. P. (2015). The effect of salinity on growth, dry weight and lipid content of the mixed microalgae culture isolated from glagah as biodiesel substrate. J. Life Sci., 9, 229-233. doi: 10.17265/1934-7391/2015.05.006
  • Tossavainen, M., Ilyass, U., Ollilainen, V., Valkonen, K., Ojalla, A., & Romantschuk, M. (2019). Influence of long term nitrogen limitation on lipid, protein and pigment production of Euglena gracilis in photoheterotrophic cultures. PerrJ, 7, e6624. doi:10.7717/peerj.6624. eCollection 2019
  • Toyama, T., Hanaoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M., & Mori, K. (2019). Enhanced production of biomass and lipids by Euglena gracilis via coculturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnol. Biofuels., 121, 1–12. doi: 10.1186/s13068-019-1544-2
  • Ulya, S., Sedjati, S., & Yudiati, E. (2018). Spirulina platensis protein content in culture media with different nitrate (KNO3) concentrations. Buletin Oseanografi Marina, 7(2), 98-102. doi: https://doi.org/10.14710/buloma.v7i2.20109
  • Vieira, K. R., Maroneze, M .M., Klein, B., Wagner, R., Queiroz, M. I., Jacob-Lopes, E., & Zepka, L. Q. (2021). The role of microalgae-based systems in the dynamics of odorous compounds in the meat processing industry. Part II – olfactometry and sensory relevance. Desalin. Water. Treat., 232, 16-25. doi: 10.5004/dwt.2021.27458
  • Wang, Y., Seppänen-Laakso, T., Rischer, H., & Wiebe, M. G. (2018). Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. Plos One, 13(4), 1-15. doi: 10.1371/journal.pone.0195329
  • Wardana, W. E., Tantri, D. H., Afifah, M. N. R., Aini, H. N., Siswanti, D. U., Maghfiroh, K. Q., Erfianti, T., Ameliani, R., Kurnianto, D., & Suyono, E. A. (2023). Effect of mercury stress on the growth and lipid content of Euglena sp. and Echinodorus palaefolius. Jurnal Biodjati, 8(1), 172:179. doi: 10.15575/biodjati.v8i1.23764
  • Widiyanto, A., Susilo, B., & Yulianingsih, R. (2014). Study on Cultivation Semi-Mass of Microalgae Chlorella sp on Ponds Area with Brackish Water Media (in District Rayunggumuk, Subdistrict Glagah, Lamongan). Jurnal Bioproses Komoditas Tropis, 2(1), 1-7.
  • Xie, W., Li, X., Xu, H., Chen, F., Cheng, K. W., Liu, H., & Liu, B. (2023). Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena gracilis to Produce Proteins. Mar. Drugs, 21(10), 519. doi: 10.3390/md21100519
  • Zarrinmehr, M. J., Farhadian, O., Heyrati, F. P., Keramat, J., Koutra, E., Kornaros, M., & Daneshvar, E. (2020). Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J.Aquat. Res., 46(2), 153-158. doi: 10.1016/j.ejar.2019.11.003
  • Zienkiewicz, A., Zienkiewicz, K., Poliner, E., Pulman, J. A., Du, Z. Y., Stefano, G., ... & Benning, C. (2020). The microalga Nannochloropsis during transition from quiescence to autotrophy in response to nitrogen availability. Plant physiology, 182(2), 819-839. doi: 10.1104/pp.19.00854
There are 64 citations in total.

Details

Primary Language English
Subjects Agricultural Marine Biotechnology
Journal Section Articles
Authors

Eko Agus Suyono 0000-0002-9208-4541

A. Najib Dhiaurahman 0009-0000-5181-2664

Ismia Wulandari 0009-0005-0201-3539

Samia Nasitathuz Zahra This is me 0009-0005-8480-8713

Tariq Akhdan Purnama This is me 0009-0008-1449-9785

Dedy Kurnianto 0000-0002-4912-6400

Tia Erfianti 0000-0002-5462-1131

Ria Amelia 0009-0004-7841-2395

Khusnul Qonita Maghfiroh 0000-0001-7660-567X

Renata Adaranyssa Egistha Putri 0000-0003-0541-685X

Project Number MBKM Faculty of Biologi 2023-2024
Early Pub Date June 20, 2025
Publication Date June 30, 2025
Submission Date May 6, 2024
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 35 Issue: 2

Cite

APA Agus Suyono, E., Dhiaurahman, A. N., Wulandari, I., … Nasitathuz Zahra, S. (2025). Characterization of Euglena sp. Amino Acids and Fatty Acid Methyl Ester (FAME) in Correlation to Ammonium Sulfate (NH₄)₂SO₄ Variation: Large-Scale Cultivation. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(2), 259-277. https://doi.org/10.29133/yyutbd.1479045
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.