Araştırma Makalesi
BibTex RIS Kaynak Göster

Ekzojen pipekolik asit uygulaması Arabidopsis thaliana L.’ da stoma kapanmasını tetikler

Yıl 2024, Cilt: 61 Sayı: 2, 143 - 150, 01.07.2024
https://doi.org/10.20289/zfdergi.1418307

Öz

Amaç: Bu çalışmanın ana amaçları şu şekildedir: (i) Ekzojen Pipekolik asit uygulamasının stoma kapanmasını tetikleyip tetiklemediğini belirlemek; (ii) Stoma tepkisinin Pipekolik asit uygulama yöntemi ve konsantrasyonlarından nasıl etkilendiğini saptamak; (iii) Pipekolik asitle uyarılmış bitkilerin, stomalar yoluyla bitkiye giriş yapan bakteriyel patojen Pseudomonas syringae pv. tomato DC3000’e karşı tepkisini araştırmak.
Materyal ve Yöntem: Taze koparılmış Arabidopsis yaprakları, 2 saat boyunca 1 mM D,L-Pipekolik asit içeren MES-KCl çözeltisine daldırılmıştır. Stoma açıklığı, yaprakların üst yüzeyinden toplanan epidermal şeritlerde ölçülmüştür. Pipekolik asit uygulanmış Arabidopsis bitkilerindeki stoma açıklığı da Pseudomonas syringae pv. tomato DC3000 inokulasyonundan 0, 2 ve 4 saat sonra alınan epidermal şeritlerde ölçülmüştür.
Araştırma Bulguları: D,L-Pipekolik asit uygulaması, konsantrasyona bağlı bir şekilde stoma kapanmasının artmasına neden olmuştur. 0.1 mM ve 1 mM D,L-Pipekolik asit ile yapılan uygulamalar stoma açıklığında sırasıyla %32.5 ve %54.7 oranında bir azalmaya yol açmıştır. 1 mM D,L-Pipekolik asit veya L-Pipekolik asit ile muamele edilen yapraklar, sırasıyla 2,67 ve 2,49 μm'ye karşılık gelen benzer stoma açıklıkları göstermiştir. Bakteriyel enfeksiyonun ardından stoma açıklıkları uygulamalar arasında önemli bir fark sergilememiştir. Pipekolik asit aracılı gelişmiş savunma, stoma bağışıklığından bağımsızdır.
Sonuç: Eksojen Pipekolik asit, Arabidopsis'te enfeksiyon öncesi stoma kapanmasını tetikler. Pipekolik asit uygulama metotları arasında (toprağı ıslatma ya da yaprağa püskürtme) stoma kapanmasını etkilemesi bakımından fark yoktur.

Kaynakça

  • Acharya, B.R. & S.M. Assmann, 2009. Hormone interactions in stomatal function. Plant Molecular Biology, 69 (4): 451-462.
  • Bernsdorff, F., A.C. Döring, K. Gruner, S. Schuck, A. Bräutigam & J. Zeier, 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. The Plant Cell, 28 (1): 102-129.
  • Chen, Y.C., E.C Holmes, J. Rajniak, J.G. Kim, S. Tang, C.R. Fischer, M.B. Muggett & E.S. Sattely, 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences, 115 (21): E4920-E4929.
  • Gudesblat, G.E., P.S. Torres & A.A. Vojnov, 2009. Xanthomonas campestris overcomes arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiology, 149 (2): 1017-1027.
  • Hao, F., S. Zhao, H. Dong, H. Zhang, L. Sun & C. Miao, 2010. Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. Journal of Integrative Plant Biology, 52 (3): 298-307.
  • Hao, J.H., X.L. Wang, C.J. Dong, Z.G. Zhang & Q.M. Shang, 2011. Salicylic acid induces stomatal closure by modulating endogenous hormone levels in cucumber cotyledons. Russian Journal of Plant Physiology, 58 (5): 906-913.
  • Hartmann, M., D. Kim, F. Bernsdorff, Z. Ajami-Rashidi, N. Scholten, S. Schreiber, T. Zeier, S. Schuck, V. Reichal-Deland & J. Zeier, 2017. Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiology, 174 (1): 124-153.
  • Hartmann, M. & J. Zeier, 2019. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Current Opinion in Plant Biology, 50: 44-57.
  • Hsu, P.K., G. Dubeaux, Y. Takahashi & J.I. Schroeder, 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal, 105 (2): 307-321.
  • Jia, W. & J. Zhang, 2008. Stomatal movements and long-distance signaling in plants. Plant Signaling & Behavior, 3 (10): 772-777.
  • Joon-Sang, L., 1998. The mechanism of stomatal closing by salicylic acid in Commelina communis L. Journal of Plant Biology, 41 (2): 97-102.
  • Judelson, H.S. & A.M.V. Ah-Fong, 2019. Exchanges at the plant-oomycete interface that influence disease. Plant Physiology, 179 (4): 1198-1211.
  • Khokon, M.A.R., E.I.J.I. Okuma, M.A. Hossain, S. Munemasa, M. Uraji, Y. Nakamura, I.C. Mori & Y. Murata, 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell & Environment, 34 (3): 434-443.
  • Kim, Y., S.J. Gilmour, L. Chao, S. Park & M.F. Thomashow, 2020. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Molecular Plant, 13 (1): 157-168.
  • Kollist, H., M. Nuhkat & M.R.G. Roelfsema, 2014. Closing gaps: linking elements that control stomatal movement. New Phytologist, 203 (1): 44-62.
  • Lenk, M., M. Wenig, K. Bauer, F. Hug, C. Knappe, B. Lange, Timsy, F. Häußler, F. Mengel, S. Dey, A. Schäffner & A.C. Vlot, 2019. Pipecolic acid is induced in barley upon infection and triggers immune responses associated with elevated nitric oxide accumulation. Molecular Plant-Microbe Interactions, 32 (10): 1303-1313.
  • Li, X., 2011. Arabidopsis growing protocol-a general guide. Bio-Protocol, 1 (17): e126-e126.
  • Li, X., X.G. Ma & J.M. He, 2013. Stomatal bioassay in Arabidopsis leaves. Bio-Protocol, 3 (19): e921-e921.
  • Liu, X., T. Afrin & K.M. Pajerowska-Mukhtar, 2019. Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity. Communications Biology, 2 (1): 1-13.
  • Lozano-Durán, R., G. Bourdais, S.Y. He & S. Robatzek, 2014. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytologist, 202 (1): 259-269.
  • Melotto, M., W. Underwood, J. Koczan, K. Nomura & S.Y. He, 2006. Plant stomata function in innate immunity against bacterial invasion. Cell, 126 (5): 969-980.
  • Melotto, M., L. Zhang, P.R. Oblessuc & S.Y. He, 2017. Stomatal defense a decade later. Plant Physiology, 174 (2): 561-571.
  • Miura, K., & Y. Tada, 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5: 70455.
  • Munemasa, S., F. Hauser, J. Park, R. Waadt, B. Brandt & J.I. Schroeder, 2015. Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28: 154-162.
  • Návarová, H., F. Bernsdorff, A.C. Döring & J. Zeier, 2013. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24 (12): 5123-5141.
  • Panchal, S., D. Roy, R. Chitrakar, L. Price, Z.S. Breitbach, D.W. Armstrong & M. Melotto, 2016. Coronatine facilitates Pseudomonas syringae infection of Arabidopsis leaves at night. Frontiers in Plant Science, 7: 880.
  • Pazarlar, S., U. Sanver & N. Cetinkaya, 2021. Exogenous pipecolic acid modulates plant defense responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). Plant Biology, 23 (3): 473-484.
  • Prodhan, Y., S. Munemasa, N.E.N. Nahar, Y. Nakamura & Y. Murata, 2018. Guard cell salicylic acid signaling İs integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiology, 178 (1): 441-450.
  • Qi, J., C.P. Song, B. Wang, J. Zhou, J. Kangasjärvi, J.K. Zhu & Z. Gong, 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60 (9): 805-826.
  • Schellenberg, B., C. Ramel & R. Dudler, 2010. Pseudomonas syringae virulence factor Syringolin a counteracts stomatal immunity by proteasome inhibition. Molecular Plant-Microbe Interactions, 23 (10): 1287-1293.
  • Schnake, A., M. Hartmann, S. Schreiber, J. Malik, L. Brahmann, I. Yildiz, J. von Dahlen, L.E. Rose, U. Schaffrath & J. Zeieet, 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Journal of Experimental Botany, 71 (20): 6444-6459.
  • Shan, L. & P. He, 2018. Pipped at the post: Pipecolic acid derivative identified as SAR regulator. Cell, 173 (2): 286-287. Sierla, M., C. Waszczak, T. Vahisalu & J. Kangasjärvi, 2016. Reactive oxygen species in the regulation of stomatal movements. Plant Physiology, 171 (3): 1569-1580.
  • Solanki, S., G. Ameen, P. Borowicz & R.S. Brueggeman, 2019. Shedding light on penetration of cereal host stomata by wheat stem rust using improved methodology. Scientific Reports, 9 (1): 7939.
  • Tosun, N. & E. Onan, 2020. Bitki hastalıklarının entegre yönetiminde bitki immunitesi uyarıcılarının potansiyel kullanımı. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (1): 145-156.
  • Toum, L., P.S. Torres, S.M. Gallego, M.P. Benavídes, A.A. Vojnov & G.E. Gudesblat, 2016. Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Frontiers in Plant Science, 7: 1851.
  • Uddin, S., D. Bae, J.Y. Cha, G. Ahn, W.Y. Kim & M.G. Kim, 2022. Coronatine induces stomatal reopening by inhibiting hormone signaling pathways. Journal of Plant Biology, 65 (5): 403-411.
  • Wang, C., R. Liu, G.H. Lim, L. de Lorenzo, K. Yu, K. Zhang & P. Kachroo, 2018a. Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances, 4 (5): eaar4509.
  • Wang, H. Q., L.P. Sun, L.X. Wang, X.W. Fang, Z.Q. Li, F.F. Zhang, X. Hu, C. Qi & J.M. He, 2020. Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. Plant Science, 294: 110464.
  • Wang, Y., S. Schuck, J. Wu, P. Yang, A.C. Döring, J. Zeier & K. Tsuda, 2018b. A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance. The Plant Cell, 30 (10): 2480-2494.
  • Yang, L.N., H. Liu, Y.P. Wang, J. Seematti, L.J. Grenville-Briggs, Z. Wang & J. Zhan, 2021a. Pathogen-mediated stomatal opening: A previously overlooked pathogenicity strategy in the oomycete pathogen Phytophthora infestans. Frontiers in Plant Science, 12: 668797.
  • Yang, Q., Z. Peng, W. Ma, S. Zhang, S. Hou, J. Wei, S. Dong, X. Yu, Y. Song, W. Gao, Z. Rengel, L. Huang, X. Cui & Q. Chen, 2021b. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Plant Physiology, 187 (4): 2837-2851.
  • Ye, W., S. Munemasa, T. Shinya, W. Wu, T. Ma, J. Lu, T. Kinoshita, H. Kaku, N. Shibuya & Y. Murata, 2020. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proceedings of the National Academy of Sciences, 117 (34): 20932-20942.
  • Zeng, W., A. Brutus, J.M. Kremer, J.C. Withers, X. Gao, A.D. Jones & S.Y. He, 2011. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLOS Pathogens, 7 (10): e1002291.
  • Zeng, W. & S.Y. He, 2010. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiology, 153 (3): 1188-1198.
  • Zhang, H., Y. Qiu, M. Li, F. Song & M. Jiang, 2020. Functions of pipecolic acid on induced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato plants. Journal of Phytopathology, 168 (10): 591-600.
  • Zipfel, C., S. Robatzek, L. Navarro, E.J. Oakeley, J.D. Jones, G. Felix & T. Boller, 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428 (6984): 764-767.

Exogenous application of pipecolic acid induces stomatal closure in Arabidopsis thaliana L.

Yıl 2024, Cilt: 61 Sayı: 2, 143 - 150, 01.07.2024
https://doi.org/10.20289/zfdergi.1418307

Öz

Objective: The major objectives of this study were (i) to determine whether exogenous Pipecolic acid treatment triggers the stomatal closure; (ii) to assess how the stomatal response is influenced by the method and concentrations of Pipecolic acid treatment; (iii) to investigate the response of Pipecolic acid-primed plants to the foliar bacterial pathogen Pseudomonas syringae pv. tomato DC3000 that invades plants through stomata.
Material and Methods: Freshly harvested Arabidopsis leaves were immersed in MES-KCl buffer supplemented with 1 mM of D,L-Pipecolic acid for 2 h. Stomatal aperture was measured in epidermal strips collected from the abaxial side of the leaves. Stomatal aperture in Pipecolic acid-treated plants was also directly quantified after Pseudomonas syringae pv. tomato DC3000 inoculation.
Results: The treatment with D,L-Pipecolic acid resulted in increased stomatal closure in a concentration-dependent manner. Treatments with 0.1 mM and 1 mM of D,L-Pipecolic acid led to a reduction in stomatal aperture by 32.5% and 54.7%, respectively. Leaves treated with either 1 mM of D,L-Pipecolic acid or L-Pipecolic acid demonstrated similar stomatal apertures corresponding to 2.67 and 2.49 μm, respectively. The stomatal apertures did not exhibit a significant difference between the treatments following the Pseudomonas syringae pv. tomato DC3000 infection. Pipecolic acid-mediated enhanced defense is independent of stomatal immunity.
Conclusion: Exogenous Pipecolic acid triggers preinvasion stomatal closure in Arabidopsis. There is no difference between pipecolic acid application methods (soil drenching or foliar spray) in terms of affecting stoma closure.

Kaynakça

  • Acharya, B.R. & S.M. Assmann, 2009. Hormone interactions in stomatal function. Plant Molecular Biology, 69 (4): 451-462.
  • Bernsdorff, F., A.C. Döring, K. Gruner, S. Schuck, A. Bräutigam & J. Zeier, 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. The Plant Cell, 28 (1): 102-129.
  • Chen, Y.C., E.C Holmes, J. Rajniak, J.G. Kim, S. Tang, C.R. Fischer, M.B. Muggett & E.S. Sattely, 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences, 115 (21): E4920-E4929.
  • Gudesblat, G.E., P.S. Torres & A.A. Vojnov, 2009. Xanthomonas campestris overcomes arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiology, 149 (2): 1017-1027.
  • Hao, F., S. Zhao, H. Dong, H. Zhang, L. Sun & C. Miao, 2010. Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. Journal of Integrative Plant Biology, 52 (3): 298-307.
  • Hao, J.H., X.L. Wang, C.J. Dong, Z.G. Zhang & Q.M. Shang, 2011. Salicylic acid induces stomatal closure by modulating endogenous hormone levels in cucumber cotyledons. Russian Journal of Plant Physiology, 58 (5): 906-913.
  • Hartmann, M., D. Kim, F. Bernsdorff, Z. Ajami-Rashidi, N. Scholten, S. Schreiber, T. Zeier, S. Schuck, V. Reichal-Deland & J. Zeier, 2017. Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiology, 174 (1): 124-153.
  • Hartmann, M. & J. Zeier, 2019. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Current Opinion in Plant Biology, 50: 44-57.
  • Hsu, P.K., G. Dubeaux, Y. Takahashi & J.I. Schroeder, 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal, 105 (2): 307-321.
  • Jia, W. & J. Zhang, 2008. Stomatal movements and long-distance signaling in plants. Plant Signaling & Behavior, 3 (10): 772-777.
  • Joon-Sang, L., 1998. The mechanism of stomatal closing by salicylic acid in Commelina communis L. Journal of Plant Biology, 41 (2): 97-102.
  • Judelson, H.S. & A.M.V. Ah-Fong, 2019. Exchanges at the plant-oomycete interface that influence disease. Plant Physiology, 179 (4): 1198-1211.
  • Khokon, M.A.R., E.I.J.I. Okuma, M.A. Hossain, S. Munemasa, M. Uraji, Y. Nakamura, I.C. Mori & Y. Murata, 2011. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell & Environment, 34 (3): 434-443.
  • Kim, Y., S.J. Gilmour, L. Chao, S. Park & M.F. Thomashow, 2020. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Molecular Plant, 13 (1): 157-168.
  • Kollist, H., M. Nuhkat & M.R.G. Roelfsema, 2014. Closing gaps: linking elements that control stomatal movement. New Phytologist, 203 (1): 44-62.
  • Lenk, M., M. Wenig, K. Bauer, F. Hug, C. Knappe, B. Lange, Timsy, F. Häußler, F. Mengel, S. Dey, A. Schäffner & A.C. Vlot, 2019. Pipecolic acid is induced in barley upon infection and triggers immune responses associated with elevated nitric oxide accumulation. Molecular Plant-Microbe Interactions, 32 (10): 1303-1313.
  • Li, X., 2011. Arabidopsis growing protocol-a general guide. Bio-Protocol, 1 (17): e126-e126.
  • Li, X., X.G. Ma & J.M. He, 2013. Stomatal bioassay in Arabidopsis leaves. Bio-Protocol, 3 (19): e921-e921.
  • Liu, X., T. Afrin & K.M. Pajerowska-Mukhtar, 2019. Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity. Communications Biology, 2 (1): 1-13.
  • Lozano-Durán, R., G. Bourdais, S.Y. He & S. Robatzek, 2014. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytologist, 202 (1): 259-269.
  • Melotto, M., W. Underwood, J. Koczan, K. Nomura & S.Y. He, 2006. Plant stomata function in innate immunity against bacterial invasion. Cell, 126 (5): 969-980.
  • Melotto, M., L. Zhang, P.R. Oblessuc & S.Y. He, 2017. Stomatal defense a decade later. Plant Physiology, 174 (2): 561-571.
  • Miura, K., & Y. Tada, 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5: 70455.
  • Munemasa, S., F. Hauser, J. Park, R. Waadt, B. Brandt & J.I. Schroeder, 2015. Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28: 154-162.
  • Návarová, H., F. Bernsdorff, A.C. Döring & J. Zeier, 2013. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell, 24 (12): 5123-5141.
  • Panchal, S., D. Roy, R. Chitrakar, L. Price, Z.S. Breitbach, D.W. Armstrong & M. Melotto, 2016. Coronatine facilitates Pseudomonas syringae infection of Arabidopsis leaves at night. Frontiers in Plant Science, 7: 880.
  • Pazarlar, S., U. Sanver & N. Cetinkaya, 2021. Exogenous pipecolic acid modulates plant defense responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). Plant Biology, 23 (3): 473-484.
  • Prodhan, Y., S. Munemasa, N.E.N. Nahar, Y. Nakamura & Y. Murata, 2018. Guard cell salicylic acid signaling İs integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiology, 178 (1): 441-450.
  • Qi, J., C.P. Song, B. Wang, J. Zhou, J. Kangasjärvi, J.K. Zhu & Z. Gong, 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60 (9): 805-826.
  • Schellenberg, B., C. Ramel & R. Dudler, 2010. Pseudomonas syringae virulence factor Syringolin a counteracts stomatal immunity by proteasome inhibition. Molecular Plant-Microbe Interactions, 23 (10): 1287-1293.
  • Schnake, A., M. Hartmann, S. Schreiber, J. Malik, L. Brahmann, I. Yildiz, J. von Dahlen, L.E. Rose, U. Schaffrath & J. Zeieet, 2020. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Journal of Experimental Botany, 71 (20): 6444-6459.
  • Shan, L. & P. He, 2018. Pipped at the post: Pipecolic acid derivative identified as SAR regulator. Cell, 173 (2): 286-287. Sierla, M., C. Waszczak, T. Vahisalu & J. Kangasjärvi, 2016. Reactive oxygen species in the regulation of stomatal movements. Plant Physiology, 171 (3): 1569-1580.
  • Solanki, S., G. Ameen, P. Borowicz & R.S. Brueggeman, 2019. Shedding light on penetration of cereal host stomata by wheat stem rust using improved methodology. Scientific Reports, 9 (1): 7939.
  • Tosun, N. & E. Onan, 2020. Bitki hastalıklarının entegre yönetiminde bitki immunitesi uyarıcılarının potansiyel kullanımı. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (1): 145-156.
  • Toum, L., P.S. Torres, S.M. Gallego, M.P. Benavídes, A.A. Vojnov & G.E. Gudesblat, 2016. Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Frontiers in Plant Science, 7: 1851.
  • Uddin, S., D. Bae, J.Y. Cha, G. Ahn, W.Y. Kim & M.G. Kim, 2022. Coronatine induces stomatal reopening by inhibiting hormone signaling pathways. Journal of Plant Biology, 65 (5): 403-411.
  • Wang, C., R. Liu, G.H. Lim, L. de Lorenzo, K. Yu, K. Zhang & P. Kachroo, 2018a. Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances, 4 (5): eaar4509.
  • Wang, H. Q., L.P. Sun, L.X. Wang, X.W. Fang, Z.Q. Li, F.F. Zhang, X. Hu, C. Qi & J.M. He, 2020. Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. Plant Science, 294: 110464.
  • Wang, Y., S. Schuck, J. Wu, P. Yang, A.C. Döring, J. Zeier & K. Tsuda, 2018b. A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance. The Plant Cell, 30 (10): 2480-2494.
  • Yang, L.N., H. Liu, Y.P. Wang, J. Seematti, L.J. Grenville-Briggs, Z. Wang & J. Zhan, 2021a. Pathogen-mediated stomatal opening: A previously overlooked pathogenicity strategy in the oomycete pathogen Phytophthora infestans. Frontiers in Plant Science, 12: 668797.
  • Yang, Q., Z. Peng, W. Ma, S. Zhang, S. Hou, J. Wei, S. Dong, X. Yu, Y. Song, W. Gao, Z. Rengel, L. Huang, X. Cui & Q. Chen, 2021b. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana. Plant Physiology, 187 (4): 2837-2851.
  • Ye, W., S. Munemasa, T. Shinya, W. Wu, T. Ma, J. Lu, T. Kinoshita, H. Kaku, N. Shibuya & Y. Murata, 2020. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proceedings of the National Academy of Sciences, 117 (34): 20932-20942.
  • Zeng, W., A. Brutus, J.M. Kremer, J.C. Withers, X. Gao, A.D. Jones & S.Y. He, 2011. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLOS Pathogens, 7 (10): e1002291.
  • Zeng, W. & S.Y. He, 2010. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiology, 153 (3): 1188-1198.
  • Zhang, H., Y. Qiu, M. Li, F. Song & M. Jiang, 2020. Functions of pipecolic acid on induced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato plants. Journal of Phytopathology, 168 (10): 591-600.
  • Zipfel, C., S. Robatzek, L. Navarro, E.J. Oakeley, J.D. Jones, G. Felix & T. Boller, 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428 (6984): 764-767.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fitopatoloji
Bölüm Makaleler
Yazarlar

Sercan Pazarlar 0000-0002-3768-4923

Erken Görünüm Tarihi 1 Temmuz 2024
Yayımlanma Tarihi 1 Temmuz 2024
Gönderilme Tarihi 11 Ocak 2024
Kabul Tarihi 23 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 61 Sayı: 2

Kaynak Göster

APA Pazarlar, S. (2024). Exogenous application of pipecolic acid induces stomatal closure in Arabidopsis thaliana L. Journal of Agriculture Faculty of Ege University, 61(2), 143-150. https://doi.org/10.20289/zfdergi.1418307

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.