Year 2019, Volume 20, Issue , Pages 33 - 44 2019-02-01

CANCER STEM CELL BIOLOGY

Serkan İsmail Göktuna [1] , Tieu Lan Chau [2] , Erta Xhafa [3]

54 104

Cancer is becoming the leading cause of death all around the world. To develop better therapeutic options against cancer, we need a thorough understanding of tumor development and dissemination. As our knowledge increases, it becomes apparent that cancer is a very complex disease and this complexity is partially due to the great level of heterogeneity even within the same tumor mass. Therefore, there is a pressing need to decipher complex regulations and interactions of the tumor cells that lead to different hierarchies. Concepts of tumor-initiating and self-renewing stem cell have long been proposed to explain the emergence of a vast number of progenies within monoclonal neoplastic growth. It is now known that cancer stem cells which are found in many cancers have many roles in tumor development and dissemination. Many fascinating properties of cancer stem cells draw further attention to clarify their involvement in tumor cell plasticity, epithelial to mesenchymal transition, chemotherapy resistance and to develop therapeutic strategies for their targeting. Here we summarized recent efforts to illustrate the progress in our understanding of the biology of cancer stem cells.

Kanser tüm dünyadaki ölümlerin en önde gelen sebebi olma yolunda ilerlemektedir. Kansere karşı daha etkili tedavi seçenekleri geliştirmek için tümör gelişimi ve yayılmasının çok daha iyi anlaşılması gerekmektedir. Konuyla ilgili bilgilerimiz arttıkça kanserin çok karmaşık bir hastalık olduğu ve bu karmaşıklığın kısmen aynı tümör kitlesinde dahi görülebilen yüksek heterojenlik düzeyine bağlı olduğu ortaya çıkmaktadır. Bu nedenle, farklı hiyerarşilere yol açan tümör hücreleri arasındaki karmaşık düzenleme ve etkileşimlerin açıklığa kavuşturulması için artan bir ihtiyaç söz konusudur. Tümör başlatan ve kendini yenileyen kök hücre kavramları, monoklonal tümör gelişiminde görülen çok sayıdaki neslin ortaya çıkışını açıklamak için uzun zamandan beri ileri sürülmektedirler. Artık günümüzde çoğu kanser tipinde bulunan kanser kök hücrelerinin tümör gelişimi ve yayılmasında çok sayıda rolleri olduğu bilinmektedir. Kanser kök hücrelerinin sahip oldukları pek çok ilginç özellikleri, tümör hücresi plastisitesi, epitemezenkimal dönüşüm ve kemoterapi direncindeki rollerinin açıklığa kavuşturulması ve yeni tedavi stratejilerinin geliştirilmesi için daha da ilgi çekmektedir. Bu çalışmada kanser kök hücresi biyolojisi ile ilgili bildiklerimizde yaşanan gelişmeleri ortaya koyabilmek için yapılan son çalışmalar özetlenmiştir.

Cancer stem cells, differentiation, plasticity, clonal selection, lineage tracing, and cancer therapy
  • Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. & Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7): 3983-3988.
  • Ball, C.R. Oppel, F., Ehrenberg, K.R., Dubash, T.D., Dieter, S.M., Hoffmann, C.M., Abel, U., Herbst, F., Koch, M., Werner, J., Bergmann, F., Ishaque, N., Schmidt, M., von Kalle, C., Scholl, C., Fröhling, S., Brors, B., Weichert, W., Weitz, J. & Glimm, H. 2017. Succession of transiently active tumor-initiating cell clones in human pancreatic cancer xenografts. EMBO Molecular Medicine, 9(7): 918-932.
  • Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J. & Clevers, H. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449: 1003-1007
  • Batlle, E. & Clevers, H. 2017. Cancer stem cells revisited. Nature Medicine, 23(10): 1124-1134.
  • Beck, B. & Blanpain, C. 2013. Unravelling cancer stem cell potential. Nature Reviews Cancer, 13(10): 727-738.
  • Beck, B., Lapouge G., Rorive, S., Drogat, B., Desaedelaere, K., Delafaille, S., Dubois, C., Salmon, I., Willekens, K., Marine, J.C. & Blanpain, C. 2015. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell, 16, 67-79.
  • Boiko, A.D., Razorenova, O.V., van de Rijn, M., Swetter, S.M., Johnson, D.L., Ly, D.P., Butler, P.D., Yang, G.P., Joshua, B., Kaplan, M.J., Longaker, M.T. & Weissman, I.L. 2010. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 466(7302): 133-137.
  • Bonnet, D. & Dick, J.E. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7): 730-737.
  • Borst, P. 2012. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biology, 2(5): 120066.
  • Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L.A., Knuechel, R. & Kirchner, T. 2001. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18): 10356-10361.
  • Celià-Terrassa, T., Meca-Cortés, O., Mateo, F., Martínez de Paz, A., Rubio, N., Arnal-Estapé, A., Ell, B.J., Bermudo, R., Díaz, A., Guerra-Rebollo, M., Lozano, J.J., Estarás, C., Ulloa, C., Álvarez-Simón, D., Milà, J., Vilella, R., Paciucci, R., Martínez-Balbás, M., de Herreros, A.G., Gomis, R.R., Kang, Y., Blanco, J., Fernández, P.L. & Thomson, T.M. 2012. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122(5): 1849-1868.
  • Chaffer, C.L., Marjanovic, N.D., Lee, T., Bell, G., Kleer, C.G., Reinhardt, F., D'Alessio, A.C., Young, R.A. & Weinberg, R.A. 2013. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 154(1): 61-74.
  • Chau, T.L., Gioia, R., Gatot, J.S., Patrascu, F., Carpentier, I., Chapelle, J.P., O'Neill, L., Beyaert, R., Piette, J. & Chariot A. 2008. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends in Biochemical Sciences, 33(4):171-180.
  • Chen, J., Li, Y., Yu, T., McKay, R.M., Burns, D.K., Kernie, S.G., & Parada, L.F. 2012. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488(7412): 522-526.
  • Clarkson, B.D. 1969. Review of recent studies of cellular proliferation in acute leukemia. National Cancer Institute Monograph, 30: 81-120.
  • Clarkson, B.D. & Fried, J. 1971. Changing concepts of treatment in acute leukemia. The Medical Clinics of North America, 55(3): 561-600.
  • Clayton, E., Doupé, D.P., Klein, A.M., Winton, D.J., Simons, B.D. & Jones, P.H. 2007. A single type of progenitor cell maintains normal epidermis. Nature, 446(7132): 185-189.
  • Clevers, H. 2011. The cancer stem cell: premises, promises and challenges. Nature Medicine, 17: 313-319.
  • Cortina, C., Turon, G., Stork, D., Hernando-Momblona, X., Sevillano, M., Aguilera, M., Tosi, S., Merlos-Suárez, A., Stephan-Otto Attolini, C., Sancho, E. & Batlle, E. 2017. A genome editing approach to study cancer stem cells in human tumors. EMBO Molecular Medicine, 9(7): 869-879.
  • Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G. & Basler, K. 2018. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature, 558: 449-453.
  • Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., Ailles, L.E., Wong, M., Joshua, B., Kaplan, M.J., Wapnir, I., Dirbas, F.M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S.K., Quake, S.R., Brown, J.M., Weissman, I.L. & Clarke. M,F. 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 458(7239): 780-783.
  • de Sousa e Melo, F., Kurtova, A.V., Harnoss, J.M., Kljavin, N., Hoeck, J.D., Hung, J., Anderson, J.E., Storm, E.E., Modrusan, Z., Koeppen, H., Dijkgraaf, G.J., Piskol, R. & de Sauvage, F.J. 2017. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543: 676-680.
  • Doulatov, S., Notta, F., Laurenti, E. & Dick, J.E. 2012. Hematopoiesis: a human perspective. Cell Stem Cell, 10: 120-136.
  • Doupé, D.P., Klein, A.M., Simons, B.D. & Jones, P.H. 2010. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Developmental Cell, 18: 317-323.
  • Enderling, H., Hlatky, L. & Hahnfeldt, P. 2013. Cancer Stem Cells: A minor cancer subpopulation that redefines global cancer features. Frontiers in Oncology, 3: 76.
  • Friedl, P. & Alexander, S. 2011. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 147(5): 992-1009.
  • Göktuna, S.I., Canli, Ö., Bollrath, J., Fingerle, A.A., Horst, D., Diamanti, M., Pallangyo, C., Bennecke, M., Nebelsiek, T., Mankan, A.K., Lang, R., Artis, D., Hu, Y., Patzelt, T., Ruland, J., Kirchner, T., Taketo, M.M., Chariot, A., Arkan, M.C. & Greten, F.R. 2014. IKKalpha promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells. Cell Reports, 7(6):1914-1925.
  • Göktuna, S.I., Shostak, K., Chau, T.L., Heukamp, L., Hennuy, B., Duong, H.Q., Ladang, A., Close, P., Klevernic, I., Olivier, F., Florin, A., Ehx, G., Baron, F., Vandereyken, M., Rahmouni, S., Vereecke, L., van Loo, G., Büttner, R., Greten, F.R. & Chariot, A. 2016. The pro-survival IKK-related kinase IKKepsilon integrates LPS and IL-17A signaling cascades to promote Wnt-dependent tumor development in the intestine. Cancer Research, 76(9): 2587-2599.
  • Göktuna, S. I., Diamanti, M. A. & Chau, T. L. 2018. IKKs and tumor cell plasticity. The FEBS Journal, 285: 2161-2181.
  • Greten, F., Eckmann, L., Greten, T., Park, J., Li, Z., Egan, L., Kagnoff, M. & Karin, M. 2004. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 118(3): 285-296.
  • Grompe, M. 2012. Tissue stem cells: New tools and functional diversity. Cell Stem Cell. 10: 685-689.
  • Guo, W., Keckesova, Z., Donaher, J.L., Shibue, T., Tischler, V., Reinhardt, F., Itzkovitz, S., Noske, A., Zürrer-Härdi, U., Bell, G., Tam, W.L., Mani, S.A., van Oudenaarden, A. & Weinberg, R.A. 2012. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 148: 1015-1028.
  • Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C. & Lander, E.S. 2011. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146: 633-644.
  • Holohan, C., Van Schaeybroeck, S., Longley, D.B. & Johnston, P.G. 2013. Cancer drug resistance: an evolving paradigm. Nature Reviews Drug Discovery, 13: 714-726.
  • Hsu, Y.C., Li, L. & Fuchs, E. 2014. Emerging interactions between skin stem cells and their niches. Nature Medicine, 20: 847-856.
  • Kalluri, R. & Weinberg, R.A. 2009. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119(6): 1420-1428.
  • Kelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L. & Strasser, A. 2007. Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836): 337.
  • Kozar, S., Morrissey, E., Nicholson, A.M., van der Heijden, M., Zecchini, H.I., Kemp, R., Tavaré, S., Vermeulen, L. & Winton, D.J. 2013. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell, 13: 626-633.
  • Kretzschmar, K. & Watt, F.M. 2012. Lineage tracing. Cell, 148(1-2): 33-45.
  • Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B.D. 2014. Differentiated kidney epithelial cells repair injured proximal tubule. Proceedings of the National Academy of Sciences of the United States of America, 111: 1527-1532.
  • Ladang, A., Rapino, F., Heukamp, L. C., Tharun, L., Shostak, K., Hermand, D., Delaunay, S., Klevernic, I., Jiang, Z., Jacques, N., Jamart, D., Migeot, V., Florin, A., Göktuna, S., Malgrange, B., Sansom, O. J., Nguyen, L., Büttner, R., Close, P. & Chariot, A. 2015. Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine. The Journal of Experimental Medicine, 212(12): 2057-2075.
  • Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A. & Dick, J.E. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367: 645-648.
  • Leushacke, M., Ng, A., Galle, J., Loeffler, M. & Barker, N. 2013. Lgr5+ gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. Cell Reports, 5: 349-356.
  • Li, L., & Bhatia, R. 2011. Stem cell quiescence. Clinical Cancer Research, 17(15): 4936-4941.
  • Li, X., Lewis, M.T., Huang, J., Gutierrez, C., Osborne, C.K., Wu, M.F., Hilsenbeck, S.G., Pavlick, A., Zhang, X., Chamness, G.C., Wong, H., Rosen, J. & Chang, J.C. 2008. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100: 672-679.
  • Magee, J.A., Piskounova, E. & Morrison, S.J. 2012. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21(3): 283-296.
  • Marusyk, A., Almendro, V. & Polyak, K. 2012. Intra-tumour heterogeneity: a looking glass for cancer? Nature Reviews Cancer, 12(5): 323-334.
  • Mejlvang, J., Kriajevska, M., Vandewalle, C., Chernova, T., Sayan, A.E., Berx, G., Mellon, J.K. & Tulchinsky, E. 2007. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Molecular Biology of the Cell, 18(11): 4615-4624.
  • Merlos-Suárez, A., Barriga, F.M., Jung, P., Iglesias, M., Céspedes, M.V., Rossell, D., Sevillano, M., Hernando-Momblona, X., da Silva-Diz, V., Muñoz, P., Clevers, H., Sancho, E., Mangues, R. & Batlle, E. 2011. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell, 8: 511-524
  • Merrell A.J. & Stanger, B.Z. 2016. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nature Reviews Molecular Cell Biology, 17: 413-425.
  • Morizur, L., Chicheportiche, A., Gauthier, L. R., Daynac, M., Boussin, F. D., & Mouthon, M. A. 2018. Distinct Molecular Signatures of Quiescent and Activated Adult neural stem cells reveal specific interactions with their microenvironment. Stem Cell Reports, 11(2): 565-577.
  • Morrison, S.J. & Kimble, J. 2006. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 441: 1068-1074.
  • Nassar, D. & Blanpain, C. 2016. Cancer stem cells: basic concepts and therapeutic implications. Annual Reviews in Pathology, 11: 47-76.
  • Nieto, M.A., Huang, R.Y., Jackson, R.A. & Thiery, J.P. 2016. EMT: 2016. Cell, 166, 21-45.
  • Novelli, M., Cossu, A., Oukrif, D., Quaglia, A., Lakhani, S., Poulsom, R., Sasieni, P., Carta, P., Contini, M., Pasca, A., Palmieri, G., Bodmer, W., Tanda, F. & Wright, N. 2003. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proceedings of the National Academy of Sciences of the United States of America, 100(6): 3311-3314.
  • Ocaña, O.H., Córcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., Barrallo-Gimeno, A., Cano, A. & Nieto, M.A. 2012. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22: 709-724.
  • Oshimori, N., Oristian, D. & Fuchs, E. 2015. TGF-b promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell, 160: 963-976.
  • Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C.S., Berenguer, A., Prats, N., Toll, A., Hueto, J.A., Bescós, C., Di Croce, L. & Benitah, S.A. 2017. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541: 41-45.
  • Poltavets, V., Kochetkova, M., Pitson, S. M., & Samuel, M. S. 2018. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Frontiers in Oncology, 8: 431.
  • Polyak, K. & Weinberg, R.A. 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4): 265-273.
  • Puisieux, A., Brabletz, T. & Caramel, J. 2014. Oncogenic roles of EMT-inducing transcription factors. Nature Cell Biology, 16: 488-494.
  • Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., & Morrison, S. J. 2008. Efficient tumour formation by single human melanoma cells. Nature, 456(7222): 593-598.
  • Radpour, R. 2017. Tracing and targeting cancer stem cells: New venture for personalized molecular cancer therapy. World Journal of Stem Cells, 9(10): 169-178.
  • Rangel-Huerta, E., & Maldonado, E. 2017. Transit-amplifying cells in the fast lane from stem cells towards differentiation. Stem Cells International, 7602951.
  • Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell, S.H. & Hogan, B.L. 2009. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106: 12771-12775.
  • Roerink, S.F., Sasaki, N., Lee-Six, H., Young, M.D., Alexandrov, L.B., Behjati, S., Mitchell, T.J., Grossmann, S., Lightfoot, H., Egan, D., Pronk, A., Smakman, N., van Gorp, J., Anderson, E., Gamble, S.J., Alder, C., van de Wetering, M., Campbell, P.J., Stratton, M.R. & Clevers, H. 2018. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature, 556: 457-462.
  • Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K.M., Speicher, D., Körbel, C., Laschke, M.W., Gimotty, P.A., Philipp, S.E., Krause, E., Pätzold, S., Villanueva, J., Krepler, C., Fukunaga-Kalabis, M., Hoth, M., Bastian, B.C., Vogt, T. & Herlyn, M. 2013. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B (high) cells. Cancer Cell, 23: 811-825.
  • Sato, T., van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., van den Born, M., Barker, N., Shroyer, N.F., van de Wetering, M. & Clevers H. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469: 415-418.
  • Saunders, L.R., Bankovich, A.J., Anderson, W.C., Aujay, M.A., Bheddah, S., Black, K., Desai, R., Escarpe, P.A., Hampl, J., Laysang, A., Liu, D., Lopez-Molina, J., Milton, M., Park, A., Pysz, M.A., Shao, H., Slingerland, B., Torgov, M., Williams, S.A., Foord, O., Howard, P., Jassem, J., Badzio, A., Czapiewski, P., Harpole, D.H., Dowlati, A., Massion, P.P., Travis, W.D., Pietanza, M.C., Poirier, J.T., Rudin, C.M., Stull, R.A. & Dylla, S.J. 2015. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Science Translational Medicine, 7: 302ra136.
  • Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L. M., Weishaupt, C., Fuhlbrigge, R. C., Kupper, T. S., Sayegh, M. H. & Frank, M.H. 2008. Identification of cells initiating human melanomas. Nature, 451(7176): 345-349.
  • Schepers, A.G., Snippert, H.J., Stange, D.E., van den Born, M., van Es, J.H., van de Wetering, M. & Clevers, H. 2012. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337: 730-735
  • Schmidt, J.M., Panzilius, E., Bartsch, H.S., Irmler, M., Beckers, J., Kari, V., Linnemann, J.R., Dragoi, D., Hirschi, B., Kloos, U.J., Sass, S., Theis, F., Kahlert, S., Johnsen, S.A., Sotlar, K. & Scheel, C.H. 2015. Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Reports, 10: 131-139
  • Schwitalla, S., Fingerle, A.A., Cammareri, P., Nebelsiek, T., Göktuna, S.I., Ziegler, P.K., Canli, O., Heijmans, J., Huels, D.J., Moreaux, G., Rupec, R.A., Gerhard, M., Schmid, R.M., Barker, N., Clevers, H., Lang, R., Neumann, J., Kirchner, T., Taketo, M.M., van den Brink, G.R., Sansom, O.J., Arkan, M.C. & Greten, F.R. 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell, 152: 25-38.
  • Shimokawa M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T. & Sato, T. 2017. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 545: 187-192.
  • Snippert, H.J., van der Flier, L.G., Sato, T., van Es, J.H., van den Born, M., Kroon-Veenboer, C., Barker, N., Klein, A.M., van Rheenen, J., Simons, B.D. & Clevers, H. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 143: 134-144.
  • Stange, D.E., Koo, B.K., Huch, M., Sibbel, G., Basak, O., Lyubimova, A., Kujala, P., Bartfeld, S., Koster, J., Geahlen, J.H., Peters, P.J., van Es, J.H., van de Wetering, M., Mills, J.C. & Clevers, H. 2013. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell, 155: 357-368.
  • Stanger, B.Z. 2015. Cellular homeostasis and repair in the mammalian liver. Annual Reviews in Physiology, 77: 179-200.
  • Takeishi, S., Matsumoto, A., Onoyama, I., Naka, K., Hirao, A. & Nakayama, K.I. 2013. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell, 23: 347-361.
  • Teng, Y.D., Wang, L., Kabatas, S., Ulrich, H., Zafonte, R.D. 2018. Cancer stem cells or tumor survival cells? Stem Cells Development, 27(21): 1466-1478.
  • Tetteh, P.W., Basak, O., Farin, H.F., Wiebrands, K., Kretzschmar, K., Begthel, H., van den Born, M., Korving, J., de Sauvage, F., van Es, J.H., van Oudenaarden, A. & Clevers, H. 2016. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell, 18: 203-213.
  • Tian, H., Biehs, B., Warming, S., Leong, K.G., Rangell, L., Klein, O.D. & de Sauvage, F.J. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 478: 255-259.
  • Tran, H.D., Luitel, K., Kim, M., Zhang, K., Longmore, G.D. & Tran, D.D. 2014. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Research, 74: 6330-6340.
  • Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S. & Yang, J. 2012. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 22: 725-736.
  • van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Yee Nee, A.N., Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born, M., Korving, J., Martens, A.C.M., Barker, N., van Oudenaarden, A. & Clevers, H. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biology, 14: 1099-1104.
  • Vermeulen, L., De Sousa E Melo, F., van der Heijden, M., Cameron, K., de Jong, J.H., Borovski, T., Tuynman, J.B., Todaro, M., Merz, C., Rodermond, H., Sprick, M.R., Kemper, K., Richel, D.J., Stassi, G. & Medema, J.P. 2010. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12: 468-476.
  • Viale, A., Pettazzoni, P., Lyssiotis, C.A., Ying, H., Sánchez, N., Marchesini, M., Carugo, A., Green, T., Seth, S., Giuliani, V., Kost-Alimova, M., Muller, F., Colla, S., Nezi, L., Genovese, G., Deem, A.K., Kapoor, A., Yao, W., Brunetto, E., Kang, Y., Yuan, M., Asara, J.M., Wang, Y.A., Heffernan, T.P., Kimmelman, A.C., Wang, H., Fleming, J.B., Cantley, L.C., DePinho, R.A. & Draetta, G.F. 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 514: 628-632.
  • Wei, L., Leibowitz, B.J., Wang, X., Epperly, M., Greenberger, J., Zhang, L. & Yu, J. 2016. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice. Journal of Clinical Investigations, 126: 4076-4087.
  • Weinberg, R. 2013. Chapter 11: Multistep Tumorigenesis, pp. 439-509. In: Molecular Biology of the Cancer. 2nd Edition. Garland Science. New York.
  • Williams, R.T., den Besten, W. & Sherr, C.J. 2007. Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes and Development, 21: 2283-2287.
  • Ye, X., Tam, W.L., Shibue, T., Kaygusuz, Y., Reinhardt, F., Ng Eaton, E. & Weinberg, R.A. 2015. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature, 525: 256-260.
  • Yen, W.C., Fischer, M.M., Axelrod, F., Bond, C., Cain, J., Cancilla, B., Henner, W.R., Meisner, R., Sato, A., Shah, J., Tang, T., Wallace, B., Wang, M., Zhang, C., Kapoun, A.M., Lewicki, J., Gurney, A. & Hoey, T. 2015. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clinical Cancer Research, 21: 2084-2095.
  • Zhang, C.L., Huang, T., Wu, B.L., He, W.X. & Liu, D. 2017. Stem cells in cancer therapy: opportunities and challenges. Oncotarget, 8(43): 75756-75766.
  • Zheng, X, Carstens, J.L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., Wu, C.C., LeBleu, V.S. & Kalluri, R. 2015. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527(7579): 525-530.
  • Zomer, A., Ellenbroek, S.I., Ritsma, L., Beerling, E., Vrisekoop, N. & Van Rheenen, J. 2013. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells, 31: 602-606.
Primary Language en
Subjects Biology
Journal Section Review/Derleme
Authors

Orcid: 0000-0001-6169-768X
Author: Serkan İsmail Göktuna (Primary Author)
Institution: İHSAN DOĞRAMACI BİLKENT ÜNİVERSİTESİ, FEN FAKÜLTESİ, MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ
Country: Turkey


Orcid: 0000-0001-6169-768X
Author: Tieu Lan Chau
Institution: İHSAN DOĞRAMACI BİLKENT ÜNİVERSİTESİ, FEN FAKÜLTESİ, MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ
Country: Turkey


Orcid: 0000-0001-6169-768X
Author: Erta Xhafa
Institution: İHSAN DOĞRAMACI BİLKENT ÜNİVERSİTESİ, FEN FAKÜLTESİ, MOLEKÜLER BİYOLOJİ VE GENETİK BÖLÜMÜ
Country: Turkey


Bibtex @review { trkjnat483577, journal = {Trakya University Journal of Natural Sciences}, issn = {2147-0294}, eissn = {2528-9691}, address = {Trakya University}, year = {2019}, volume = {20}, pages = {33 - 44}, doi = {10.23902/trkjnat.483577}, title = {CANCER STEM CELL BIOLOGY}, key = {cite}, author = {Göktuna, Serkan İsmail and Chau, Tieu Lan and Xhafa, Erta} }
APA Göktuna, S , Chau, T , Xhafa, E . (2019). CANCER STEM CELL BIOLOGY. Trakya University Journal of Natural Sciences, 20 (), 33-44. DOI: 10.23902/trkjnat.483577
MLA Göktuna, S , Chau, T , Xhafa, E . "CANCER STEM CELL BIOLOGY". Trakya University Journal of Natural Sciences 20 (2019): 33-44 <http://dergipark.org.tr/trkjnat/issue/39830/483577>
Chicago Göktuna, S , Chau, T , Xhafa, E . "CANCER STEM CELL BIOLOGY". Trakya University Journal of Natural Sciences 20 (2019): 33-44
RIS TY - JOUR T1 - CANCER STEM CELL BIOLOGY AU - Serkan İsmail Göktuna , Tieu Lan Chau , Erta Xhafa Y1 - 2019 PY - 2019 N1 - doi: 10.23902/trkjnat.483577 DO - 10.23902/trkjnat.483577 T2 - Trakya University Journal of Natural Sciences JF - Journal JO - JOR SP - 33 EP - 44 VL - 20 IS - SN - 2147-0294-2528-9691 M3 - doi: 10.23902/trkjnat.483577 UR - https://doi.org/10.23902/trkjnat.483577 Y2 - 2019 ER -
EndNote %0 Trakya University Journal of Natural Sciences CANCER STEM CELL BIOLOGY %A Serkan İsmail Göktuna , Tieu Lan Chau , Erta Xhafa %T CANCER STEM CELL BIOLOGY %D 2019 %J Trakya University Journal of Natural Sciences %P 2147-0294-2528-9691 %V 20 %N %R doi: 10.23902/trkjnat.483577 %U 10.23902/trkjnat.483577
ISNAD Göktuna, Serkan İsmail , Chau, Tieu Lan , Xhafa, Erta . "CANCER STEM CELL BIOLOGY". Trakya University Journal of Natural Sciences 20 / (February 2019): 33-44. https://doi.org/10.23902/trkjnat.483577