Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 20 Sayı: 1, 19 - 26, 15.04.2019
https://doi.org/10.23902/trkjnat.508120

Öz

Akut
gastroenterit hastalığının önemli nedenlerinden biri norovirüslerdir. Konakçı
hücreye, hücre yüzeyindeki çoklu şeker halkalarından oluşan HGBA reseptörleri
ile etkileşerek enfekte olurlar. Hücreye girmek için virüse ait kapsid proteini
hücre yüzeyi reseptörleri ile kompleksleşir. Her ne kadar protein bazı ortak
glikanların varlığında kompleks olarak başarılı bir şekilde kristalize edilmiş
olsa da, şeker kısımlarının bağlanmasından kaynaklanan protein yapısındaki
dinamik değişim henüz tam olarak aydınlatılamamıştır. Virüs proteinin HBGA'lara
bağlanma mekanizmasını anlama ve gastroenterit hastalığına karşı tedavi
stratejileri geliştirmesine yardımcı olması nedeniyle bu dinamik değişimi
anlamak kritik derecede öneme sahiptir. Bu çalışmada, virüs enfeksiyonu için
önemli olabilecek etkileşimler hakkında bilgi edinmek için yabanıl VP1 kapsit
proteininin dinamik özelliklerini moleküler dinamik metotlarla hesapladık.
Şeker kısmının bağlanmasının, bağlanma bölgesinde gözle görülür dinamik
değişikliklere neden olmadığını tespit ettik. Bununla birlikte, ilginç bir
şekilde, allosterik bir etkinin göstergesi olabilecek 395-400 numaralı sekansa
ait amino asitlerinde ihmal edilemeyecek bir hareketlilik meydana geldiğini
gözlemledik. 

Kaynakça

  • Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B. & Lindahl, E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2: 19-25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aliabadi, N., Lopman, B.A., Parashar, U.D. & Hall, A.J. 2015. Progress toward norovirus vaccines: considerations for further development and implementation in potential target populations. Expert Review of Vaccines, 14(9): 1241-1253. https://doi.org/10.1586/14760584.2015.1073110
  • Belliot, G., Lopman, B.A., Ambert-Balay, K. & Pothier, P. 2014. The burden of norovirus gastroenteritis: an important foodborne and healthcare-related infection. Clinical Microbiology and Infection, 20(8): 724-730. https://doi.org/10.1111/1469-0691.12722
  • Caddy, S., Breiman, A., le Pendu, J. & Goodfellow, I. 2014. Genogroup IV and VI canine noroviruses interact with histo-blood group antigens. Journal of Virology, 88(18): 10377-10391. https://doi.org/10.1128/JVI.01008-14
  • Choi, J.-M., Hutson, A.M., Estes, M.K. & Prasad, B.V.V. 2008. Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proceedings of the National Academy of Sciences, 105(27): 9175-9180. https://doi.org/10.1073/pnas.0803275105
  • de Graaf, M., van Beek, J., & Koopmans, M.P. 2016. Human norovirus transmission and evolution in a changing world. Nature Reviews: Microbiology, 14(7): 421-433. https://doi.org/10.1038/nrmicro.2016.48
  • Garaicoechea, L., Aguilar, A., Parra, G.I., Bok, M., Sosnovtsev, S.V., Canziani, G., Green, K.Y., Bok, K. & Parreno, V. 2015. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PLoS One, 10(8): e0133665. https://doi.org/10.1371/journal.pone.0133665
  • Hoa Tran, T.N., Trainor, E., Nakagomi, T., Cunliffe, N.A. & Nakagomi, O. 2013. Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. Journal of Clinical Virology, 56(3): 185-193. https://doi.org/10.1016/j.jcv.2012.11.011
  • Ishida, T. 2018. Computational analysis of carbohydrate recognition based on hybrid QM/MM modeling: a case study of norovirus capsid protein in complex with Lewis antigen. Physical Chemistry Chemical Physics, 20(7): 4652-4665. https://doi.org/10.1039/C7CP07701G
  • Kambhampati, A., Koopmans, M. & Lopman, B.A. 2015. Burden of norovirus in healthcare facilities and strategies for outbreak control. Journal of Hospital Infection, 89(4): 296-301. https://doi.org/10.1016/j.jhin.2015.01.011
  • Karst, S.M., Wobus, C.E., Goodfellow, I.G., Green, K.Y. & Virgin, H.W. 2014. Advances in norovirus biology. Cell Host Microbe, 15(6): 668-680. https://doi.org/ 10.1016/j.chom.2014.05.015
  • Kocak, A., Erol, I., Yildiz, M. & Can, H. 2016. Computational insights into the protonation states of catalytic dyad in BACE1-acyl guanidine based inhibitor complex. Journal of Molecular Graphics and Modeling, 70: 226-235. https://doi.org/10.1016/j.jmgm.2016.10.013
  • Kocak, A. & Yildiz, M. 2017. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease. Journal of Molecular Graphics and Modeling, 74: 44-53. https://doi.org/ 10.1016/j.jmgm.2017.03.011
  • Kotloff, K.L., Nataro, J.P., Blackwelder, W.C., Nasrin, D., Farag, T.H., Panchalingam, S., Wu, Y., Sow, S.O., Sur, D., Breiman, R.F., Faruque, A.S., Zaidi, A.K., Saha, D., Alonso, P.L., Tamboura, B., Sanogo, D., Onwuchekwa, U., Manna, B., Ramamurthy, T., Kanungo, S., Ochieng, J.B., Omore, R., Oundo, J.O., Hossain, A., Das, S.K., Ahmed, S., Qureshi, S., Quadri, F., Adegbola, R.A., Antonio, M., Hossain, M.J., Akinsola, A., Mandomando, I., Nhampossa, T., Acacio, S., Biswas, K., O'Reilly, C.E., Mintz, E.D., Berkeley, L.Y., Muhsen, K., Sommerfelt, H., Robins-Browne, R.M. & Levine, M.M. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet, 382(9888): 209-222. https://doi.org/10.1016/S0140-6736(13)60844-2
  • Kubota, T., Kumagai, A., Ito, H., Furukawa, S., Someya, Y., Takeda, N., Ishii, K., Wakita, T., Narimatsu, H. & Shirato, H. 2012. Structural basis for the recognition of Lewis antigens by genogroup I norovirus. Journal of Virology, 86(20): 11138-11150. https://doi.org/10.1128/JVI.00278-12
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O. & Shaw, D.E. 2010. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8): 1950-1958. https://doi.org/10.1002/prot.22711
  • Lochridge, V.P., Jutila, K.L., Graff, J.W. & Hardy, M.E. 2005. Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions. Journal of General Virology, 86(Pt 10): 2799-2806. https://doi.org/10.1099/vir.0.81134-0
  • Olsson, M.H., Sondergaard, C.R., Rostkowski, M. & Jensen, J.H. 2011. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation, 7(2): 525-537. https://doi.org/10.1021/ct100578z
  • Patel, M.M., Hall, A.J., Vinje, J. & Parashar, U.D. 2009. Noroviruses: a comprehensive review. Journal of Clinical Virology, 44(1): 1-8. https://doi.org/10.1016/j.jcv.2008.10.009
  • Rocha-Pereira, J., Neyts, J. & Jochmans, D. 2014. Norovirus: targets and tools in antiviral drug discovery. Biochemical Pharmacology, 91(1): 1-11. https://doi.org/10.1016/j.bcp.2014.05.021
  • Sapparapu, G., Czako, R., Alvarado, G., Shanker, S., Prasad, B.V., Atmar, R.L., Estes, M.K. & Crowe, J.E., Jr. 2016. Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding. PLoS Pathog, 12(6): e1005719. https://doi.org/10.1371/journal.ppat.1005719
  • Schrödinger, L. 2015. Maestro. New York, NY: Schrödinger, LLC.
  • Shanker, S., Czako, R., Sankaran, B., Atmar, R.L., Estes, M.K. & Prasad, B.V. 2014. Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses. Journal of Virology, 88(11): 6168-6180. https://doi.org/10.1128/JVI.00201-14
  • Tamminen, K., Malm, M., Vesikari, T. & Blazevic, V. 2016. Mucosal Antibodies Induced by Intranasal but Not Intramuscular Immunization Block Norovirus GII.4 Virus-Like Particle Receptor Binding. Viral Immunology, 29(5): 315-319. https://doi.org/10.1089/vim.2015.0141
  • Tan, M. & Jiang, X. 2014. Vaccine against norovirus. Hum Vaccin Immunother, 10(6): 1449-1456. https://doi.org/ 10.4161/hv.28626
  • Toukan, K. & Rahman, A. 1985. Molecular-dynamics study of atomic motions in water. Physical Review B: Condensed Matter and Materials Physics, 31(5): 2643-2648.
  • Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. & Case, D.A. 2004. Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9): 1157-1174. https://doi.org/10.1002/jcc.20035
  • Wang, J., Wang, W., Kollman, P.A. & Case, D.A. 2006. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2): 247-260. doi: https://doi.org/10.1016/j.jmgm.2005.12.005
  • White, P.A. 2014. Evolution of norovirus. Clinical Microbiology and Infection, 20(8): 741-745. https://doi.org/10.1111/1469-0691.12746

MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN

Yıl 2019, Cilt: 20 Sayı: 1, 19 - 26, 15.04.2019
https://doi.org/10.23902/trkjnat.508120

Öz

Noroviruses are the main cause for acute gastroenteritis disease. They
infect the host cell via interaction with HGBA receptors on the cell
surface. Virus makes complex
with cell surface receptors through its capsid protein VP1 to enter the cell.
Although the protein has been successfully crystallized in the presence of some
common glycans, the dynamic change in the protein structure when interacting
with sugar moieties has yet to be fully elucidated. This is critically
important since it leads to understanding the protein’s recognition mechanism of
HBGAs and develop therapeutic strategies against the gastroenteritis disease.
Here, we computationally assessed the dynamic features of wild type VP1
envelope protein to get insights into the interactions that can be important
for virus infectivity. We have found that the binding of sugar moiety does not
cause noticeable dynamic changes in the binding region. However, interestingly,
a drastic change occurs in a distant loop lying at the residue numbers of
395-400, which might be indication of an allosteric effect.

Kaynakça

  • Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B. & Lindahl, E. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2: 19-25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aliabadi, N., Lopman, B.A., Parashar, U.D. & Hall, A.J. 2015. Progress toward norovirus vaccines: considerations for further development and implementation in potential target populations. Expert Review of Vaccines, 14(9): 1241-1253. https://doi.org/10.1586/14760584.2015.1073110
  • Belliot, G., Lopman, B.A., Ambert-Balay, K. & Pothier, P. 2014. The burden of norovirus gastroenteritis: an important foodborne and healthcare-related infection. Clinical Microbiology and Infection, 20(8): 724-730. https://doi.org/10.1111/1469-0691.12722
  • Caddy, S., Breiman, A., le Pendu, J. & Goodfellow, I. 2014. Genogroup IV and VI canine noroviruses interact with histo-blood group antigens. Journal of Virology, 88(18): 10377-10391. https://doi.org/10.1128/JVI.01008-14
  • Choi, J.-M., Hutson, A.M., Estes, M.K. & Prasad, B.V.V. 2008. Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proceedings of the National Academy of Sciences, 105(27): 9175-9180. https://doi.org/10.1073/pnas.0803275105
  • de Graaf, M., van Beek, J., & Koopmans, M.P. 2016. Human norovirus transmission and evolution in a changing world. Nature Reviews: Microbiology, 14(7): 421-433. https://doi.org/10.1038/nrmicro.2016.48
  • Garaicoechea, L., Aguilar, A., Parra, G.I., Bok, M., Sosnovtsev, S.V., Canziani, G., Green, K.Y., Bok, K. & Parreno, V. 2015. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PLoS One, 10(8): e0133665. https://doi.org/10.1371/journal.pone.0133665
  • Hoa Tran, T.N., Trainor, E., Nakagomi, T., Cunliffe, N.A. & Nakagomi, O. 2013. Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. Journal of Clinical Virology, 56(3): 185-193. https://doi.org/10.1016/j.jcv.2012.11.011
  • Ishida, T. 2018. Computational analysis of carbohydrate recognition based on hybrid QM/MM modeling: a case study of norovirus capsid protein in complex with Lewis antigen. Physical Chemistry Chemical Physics, 20(7): 4652-4665. https://doi.org/10.1039/C7CP07701G
  • Kambhampati, A., Koopmans, M. & Lopman, B.A. 2015. Burden of norovirus in healthcare facilities and strategies for outbreak control. Journal of Hospital Infection, 89(4): 296-301. https://doi.org/10.1016/j.jhin.2015.01.011
  • Karst, S.M., Wobus, C.E., Goodfellow, I.G., Green, K.Y. & Virgin, H.W. 2014. Advances in norovirus biology. Cell Host Microbe, 15(6): 668-680. https://doi.org/ 10.1016/j.chom.2014.05.015
  • Kocak, A., Erol, I., Yildiz, M. & Can, H. 2016. Computational insights into the protonation states of catalytic dyad in BACE1-acyl guanidine based inhibitor complex. Journal of Molecular Graphics and Modeling, 70: 226-235. https://doi.org/10.1016/j.jmgm.2016.10.013
  • Kocak, A. & Yildiz, M. 2017. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease. Journal of Molecular Graphics and Modeling, 74: 44-53. https://doi.org/ 10.1016/j.jmgm.2017.03.011
  • Kotloff, K.L., Nataro, J.P., Blackwelder, W.C., Nasrin, D., Farag, T.H., Panchalingam, S., Wu, Y., Sow, S.O., Sur, D., Breiman, R.F., Faruque, A.S., Zaidi, A.K., Saha, D., Alonso, P.L., Tamboura, B., Sanogo, D., Onwuchekwa, U., Manna, B., Ramamurthy, T., Kanungo, S., Ochieng, J.B., Omore, R., Oundo, J.O., Hossain, A., Das, S.K., Ahmed, S., Qureshi, S., Quadri, F., Adegbola, R.A., Antonio, M., Hossain, M.J., Akinsola, A., Mandomando, I., Nhampossa, T., Acacio, S., Biswas, K., O'Reilly, C.E., Mintz, E.D., Berkeley, L.Y., Muhsen, K., Sommerfelt, H., Robins-Browne, R.M. & Levine, M.M. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet, 382(9888): 209-222. https://doi.org/10.1016/S0140-6736(13)60844-2
  • Kubota, T., Kumagai, A., Ito, H., Furukawa, S., Someya, Y., Takeda, N., Ishii, K., Wakita, T., Narimatsu, H. & Shirato, H. 2012. Structural basis for the recognition of Lewis antigens by genogroup I norovirus. Journal of Virology, 86(20): 11138-11150. https://doi.org/10.1128/JVI.00278-12
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O. & Shaw, D.E. 2010. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8): 1950-1958. https://doi.org/10.1002/prot.22711
  • Lochridge, V.P., Jutila, K.L., Graff, J.W. & Hardy, M.E. 2005. Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions. Journal of General Virology, 86(Pt 10): 2799-2806. https://doi.org/10.1099/vir.0.81134-0
  • Olsson, M.H., Sondergaard, C.R., Rostkowski, M. & Jensen, J.H. 2011. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation, 7(2): 525-537. https://doi.org/10.1021/ct100578z
  • Patel, M.M., Hall, A.J., Vinje, J. & Parashar, U.D. 2009. Noroviruses: a comprehensive review. Journal of Clinical Virology, 44(1): 1-8. https://doi.org/10.1016/j.jcv.2008.10.009
  • Rocha-Pereira, J., Neyts, J. & Jochmans, D. 2014. Norovirus: targets and tools in antiviral drug discovery. Biochemical Pharmacology, 91(1): 1-11. https://doi.org/10.1016/j.bcp.2014.05.021
  • Sapparapu, G., Czako, R., Alvarado, G., Shanker, S., Prasad, B.V., Atmar, R.L., Estes, M.K. & Crowe, J.E., Jr. 2016. Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding. PLoS Pathog, 12(6): e1005719. https://doi.org/10.1371/journal.ppat.1005719
  • Schrödinger, L. 2015. Maestro. New York, NY: Schrödinger, LLC.
  • Shanker, S., Czako, R., Sankaran, B., Atmar, R.L., Estes, M.K. & Prasad, B.V. 2014. Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses. Journal of Virology, 88(11): 6168-6180. https://doi.org/10.1128/JVI.00201-14
  • Tamminen, K., Malm, M., Vesikari, T. & Blazevic, V. 2016. Mucosal Antibodies Induced by Intranasal but Not Intramuscular Immunization Block Norovirus GII.4 Virus-Like Particle Receptor Binding. Viral Immunology, 29(5): 315-319. https://doi.org/10.1089/vim.2015.0141
  • Tan, M. & Jiang, X. 2014. Vaccine against norovirus. Hum Vaccin Immunother, 10(6): 1449-1456. https://doi.org/ 10.4161/hv.28626
  • Toukan, K. & Rahman, A. 1985. Molecular-dynamics study of atomic motions in water. Physical Review B: Condensed Matter and Materials Physics, 31(5): 2643-2648.
  • Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A. & Case, D.A. 2004. Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9): 1157-1174. https://doi.org/10.1002/jcc.20035
  • Wang, J., Wang, W., Kollman, P.A. & Case, D.A. 2006. Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2): 247-260. doi: https://doi.org/10.1016/j.jmgm.2005.12.005
  • White, P.A. 2014. Evolution of norovirus. Clinical Microbiology and Infection, 20(8): 741-745. https://doi.org/10.1111/1469-0691.12746
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Abdulkadir Kocak 0000-0001-6891-6929

Müslüm Yıldız Bu kişi benim 0000-0001-8396-1461

Yayımlanma Tarihi 15 Nisan 2019
Gönderilme Tarihi 4 Ocak 2019
Kabul Tarihi 27 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 1

Kaynak Göster

APA Kocak, A., & Yıldız, M. (2019). MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN. Trakya University Journal of Natural Sciences, 20(1), 19-26. https://doi.org/10.23902/trkjnat.508120
AMA Kocak A, Yıldız M. MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN. Trakya Univ J Nat Sci. Nisan 2019;20(1):19-26. doi:10.23902/trkjnat.508120
Chicago Kocak, Abdulkadir, ve Müslüm Yıldız. “MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN”. Trakya University Journal of Natural Sciences 20, sy. 1 (Nisan 2019): 19-26. https://doi.org/10.23902/trkjnat.508120.
EndNote Kocak A, Yıldız M (01 Nisan 2019) MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN. Trakya University Journal of Natural Sciences 20 1 19–26.
IEEE A. Kocak ve M. Yıldız, “MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN”, Trakya Univ J Nat Sci, c. 20, sy. 1, ss. 19–26, 2019, doi: 10.23902/trkjnat.508120.
ISNAD Kocak, Abdulkadir - Yıldız, Müslüm. “MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN”. Trakya University Journal of Natural Sciences 20/1 (Nisan 2019), 19-26. https://doi.org/10.23902/trkjnat.508120.
JAMA Kocak A, Yıldız M. MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN. Trakya Univ J Nat Sci. 2019;20:19–26.
MLA Kocak, Abdulkadir ve Müslüm Yıldız. “MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN”. Trakya University Journal of Natural Sciences, c. 20, sy. 1, 2019, ss. 19-26, doi:10.23902/trkjnat.508120.
Vancouver Kocak A, Yıldız M. MOLECULAR DYNAMICS STUDIES OF THE NOROVIRUS-HOST CELL INTERACTION MEDIATED BY H-TYPE 1 ANTIGEN. Trakya Univ J Nat Sci. 2019;20(1):19-26.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.