Year 2018, Volume 28, Issue 4, Pages 490 - 501 2018-12-31

Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması
Bioremediation and Using of Fungi in Bioremediation

Ali VURAL [1] , Semra DEMİR [2] , Gökhan BOYNO [3]

85 411

Çevre kirliliğine neden olan kirleticiler, artan nüfusun paralelinde gelişen sanayi ile birlikte hızlı bir artış kazanmıştır. Bu kirleticiler hem doğanın dengesini bozmakta hem de canlıların sağlığını olumsuz yönde etkilemektedir. Günümüzde bu kirleticilerin giderilmesi ilgili yapılan çalışmalarda biyoremediasyon önemli bir yer kazanmıştır. Biyoremediasyon, bu kirleticiler üzerinde çeşitli mikroorganizmaları kullanarak çevreye zararlı olmayan ürünlere dönüştürmek için uygun maliyetli ve çevre dostu bir yöntem olmaktadır. Özellikle de bu mikroorganizmalar arasında biyoremediasyonda kullanılan funguslar, salgıladıkları enzimler ve/veya miselli yapıları gibi özellikleri ile kirleticileri ayrıştırarak zararsız ürünlere dönüştürdüklerinden dolayı oldukça dikkat çekmiştir. Bu derlemede, biyoremediasyon ve fungusların farklı ve yeni metabolik kapasitelerini tanımlayan farklı yönleri ile biyoremediasyon potansiyelindeki rolünün ortak bir platformda bir araya getirilmesi amaçlanmıştır. 

Pollutants causing environmental pollution have gained a rapid increase with the industry developing parallel to the increasing population. These pollutants both disrupt the balance of nature and affect the health of the living beings in the negative. At the present time, bioremediation has gained an important place in the studies related to the elimination of these pollutants. Bioremediation is an affordable and environmentally friendly method for converting pollutants into non-environmentally harmful products using various microorganisms. In particular, among these microorganisms, the fungi used in the bioremediation have attracted considerable attention because they decompose the pollutants into harmless products by their properties such as secreted enzymes and / or mycelia structures. In this review, it is aimed to bring together the different aspects of bioremediation and fungi that define different and new metabolic capacities and their role in bioremediation potential on a common platform.

  • Adenipekun CO, Lawal R (2012). Uses of mushrooms in bioremediation: A review. Biotechnology and Molecular Biology Reviews, 7(3), 62-68.Adeniyi AA, Afolabi JA (2002). Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in lagos metropolis. Environmental International, 28, 79-82. Anonim (2015). https://www.teachengineering.org/view_lesson.php?url= collection/cub_/lessons/cub_bi o/cub_bio_lesson06.xml (Erişim tarihi: 15.03.2018).Akhtar S, Mahmood-ul-Hassan M, Ahmad R, Suthor V, Yasin M (2013). Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ, 32(1), 55-62.Akıncı YC, Yüksek T, Demirel Ö (2016). Ağır metaller ile kirlenmiş toprağın iyileştirilmesinde Vetiver grass (Vtiveria zizanioides (linn.) nash) ve solucanların kullanılması. Mimarlık Bilimleri ve Uygulamaları Dergisi, 1. Alexander M (1999). Biodegradation and bioremediation second edition, Academic Press New York. Anastasi A, Tigini V, Varese GC (2013). The bioremediation potential of different ecophysiological groups of fungi. In Fungi as bioremediators. Springer, Berlin, Heidelberg, 29-49.Anastasi A, Coppola T, Prigione V, Varese GC (2009b). Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J. Hazard. Matter. 165: 1229–1233. Antizar-Ladislao B, Beck AJ, Spanova K, Lopez-Real J, Russell NJ (2007). The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. Journal of Hazardous Materials, 144(1), 340-347.Antizar-Ladislao B, Spanova K, Beck AJ, Russell NJ (2008). Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting. International Biodeterioration & Biodegradation, 61(4), 357-364. Baker KH, Herson DS (1994). Bioremediation. McGraw – Hill, New York Baldrian P (2006). Fungal laccases–occurrence and properties. FEMS microbiology reviews, 30(2), 215-242.Bennett RM, Cordero PRF, Bautista GS, Dedeles GR (2013). Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chemistry and Ecology, 29(4), 320-328. Berkem AR (1996). Kimya tarihine toplu bir bakış. Türkiye Kimya Derneği Yayınları.Boopathy R (2000). Factors limiting bioremediation Technologies. Bioresource Technology, 74: 63-67. Bumpus JA, Aust SD (1985). “Studies On The Biodegradation of Organopollutants by a White Rot Fungus”, İnternational Conference on New Frontiers for Hazardous Waste Management, 404-410.Ceyhan N, Esmeray E (2012). Petrol kirliliği ve biyoremediasyon. Türk Bilimsel Derleme Dergisi, 5(1), 95-101. Chowdhury S, Bala NN, Dhauria P (2012). Bioremediation-A Natural Way For Cleaner Environment. International Journal of Pharmaceutical, Chemical and Biological Sciences, 2(4): 600-611. Connell L, Staudigel H (2013). Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology, 2(2), 798-809. Çakmakcı T, Şahin Ü, Kızıloğlu FM, Tüfenkçi Ş, Kuşlu Y, Erkuş FŞ (2017). Wastewater Treatment in Constructed Wetlands and Suggestions for the Use of Constructed Wetlands in Cold-Climate Regions. Yuzuncu Yıl University Journal of Agricultural Sciences (YYU J AGR SCI). 27(4): 651-656.Damare S, Purnima S, Seshagiri R (2012). "Biotechnology of marine fungi." Biology of Marine Fungi. Springer, Berlin, Heidelberg. 277-297.Damisa D, Oyegoke TS, Ijah UJJ, Adabara NU, Bala JD, Abdulsalam R (2013). Biodegradation of Petroleum by Fungi Isolated From Unpolluted Tropical Soil.Demir G, Özcan HK, Elmaslar E, Borat M (2006). Decolorization of Azo Dyes by the White Rot Fungus Phanerochaete chrysosporium. Sigma, 3. Demir S (2002). Mikorhizal Fungus Glomus intraradices (Schenck & Smith)’in Bazı Sebze Bitkilerinin Köklerinde Kolonizasyonu. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi (J. Agric. Sci.), 12(1), 53-57.Deshmukh R, Khardenavis AA, Purohit HJ (2016). Diverse metabolic capacities of fungi for bioremediation. Indian journal of microbiology, 56(3), 247-264. Dindar E, Şağban F, Başkaya H (2010). Bioremediation of Contaminated Soil. Uludağ University Journal of The Faculty of Engineering, 15 (2), 123-137. Divya LM, Prasanth GK, Sadasivan C (2014). Potential of the salt‐tolerant laccase‐producing strain Trichoderma viride Pers. NFCCI‐2745 from an estuary in the bioremediation of phenol‐polluted environments. Journal of basic microbiology, 54(6), 542-547.Donnelly PK, Fletcher JS (1994). Potential use of mycorrhizal fungi as bioremediation agents.Dua M, Singh A, Sethunathan N, Johri A (2002). Biotechnology and bioremediation: successes and limitations. Applied microbiology and biotechnology, 59(2), 143-152. Duarte K, Justino CI, Pereira R, Panteleitchouk TS, Freitas AC, Rocha-Santos TA, Duarte AC (2013). Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica-alginate-fungi biocomposites. Journal of Environmental Science and Health, Part A, 48(2), 166-172.Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013). Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation, 24(6), 765-774.Evans CS. Hedger JN (2001). Degradation of plant cell wall polymers. In Fungi in Bioremediation; Gadd GM, Ed. Cambridge University Press: Cambridge, UK. 1–26. Gadd GM (2001). Fungi in Bioremediation. Cambridge University Press, Cambridge, UK. 481 pp.Gao GR, Yin YF, Yang DY, Yang DF (2013). Promoting behavior of fungal degradation Polychlorinated Biphenyl by Maifanite. In Advanced Materials Research. Trans Tech Publications, 662, pp. 515-519.Garzoli L, Gnavi G, Tamma F, Tosi S, Varese GC, Picco AM (2015). Sink or swim: Updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Progress in Oceanography, 137, 140-148.Gillespie IM, Philp JC (2013). Bioremediation, an environmental remediation technology for the bioeconomy. Trends in biotechnology, 31(6), 329-332. Goltapeh EM, Danesh YR, Varma A (2013). Fungi as bioremediators. In Soil Biology. Springer, Heidelberg, Germany, 32-489 pp.Gomez-Silvan C, Molina-Munoz M, Poyatos JM, Ramos A, Hontoria E, Rodelas B, Gonzalez-Lopez J (2010). Structure of archaeal communities in membranebioreactor and submerged-biofilter wastewater treatment plants. Bioresour. Technol. 101 (7), 2096–2105. Günther TH, Perner B, Gramss G (1998). Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). Journal of Basic Microbiology, 38(3), 197-206.Hadibarata T, Zubir MMFA, Chuang TZ, Yusoff ARM, Salim MR, Fulazzaky MA, Nugroho AE (2013). Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia microbiologica, 58(5), 385-391.Hadibarata T, Teh ZC, Zubir MMFA, Khudhair AB, Yusoff ARM, Salim MR, Hidayat T (2013). Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii. Bioprocess and biosystems engineering, 36(10), 1455-1461. Harms H, Schlosser D, Wick LY (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177. Hickey P (2013). Toxicity of water soluble fractions of crude oil on some bacteria and fungi Isolated from marine water. Am J Anim Res, 3:24–29 Hoshino YT, Morimoto S (2008). Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction‐denaturing gradient gel electrophoresis. Soil Science & Plant Nutrition, 54(5), 701-710. Huang Y, Zhao X, Luan S (2007). Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Science of the Total Environment, 385(1-3), 235-241.Huang Y, Zhang J, Zhu L (2013). Evaluation of the application potential of bentonites in phenanthrene bioremediation by characterizing the biofilm community. Bioresour. Technol. 134, 17–23. Hyde SM, Wood PM (1997). A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe (III) reduction by cellobiose dehydrogenase and Fe (II) oxidation at a distance from the hyphae. Microbiology, 143(1), 259-266.Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013). Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia, 175(5-6), 369-379.Jebapriya GR, Gnanadoss JJ (2013). Bioremediation of textile dye using white rot fungi: A review. International Journal of Current Research and Review, 5(3), 1.Jing Z, Li YY, Cao S, Liu Y (2012). Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water. Bioresour. Technol. 120, 212–217.Joner EJ, Johansen A, Loibner AP, dela Cruz MA, Szolar OH, Portal JM, Leyval C (2001). Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environmental science & technology, 35(13), 2773-2777.Jorgensen KS, Puustinen J, Suortti AM (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environ. Pollut. 107 (2), 245–254. Kahraman S, Yeşilada O (2001). Industrial and agricultural wastes as substrates for laccase production by white-rot fungi. Folia microbiologica, 46(2), 133.Kapdan I, Kargi F, McMullan G, Marchant R (2000). Comparison of white-rot fungi cultures for decolorization of textile dyestuffs. Bioprocess Engineering, 22(4), 347-351.Karigar CS, Rao SS (2011). Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme research, 2011. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41(1-2), 197-207.Kim GH, Choi YS, Kim JJ (2009). Improving the efficiency of metal removal from CCA‐treated wood using brown rot fungi. Environmental technology, 30(7), 673-679.Kocaer FO, Başkaya HS (2003). Metallerle Kirlenmiş Toprakların Temizlenmesinde Uygulanan Teknolojiler.Kulshreshtha S, Mathur N, Bhatnagar P (2014). Mushroom as a product and their role in mycoremediation. AMB Express, 4(1), 29.Kurniati E, Arfarita N, Imai T, Higuchi T. Kanno A, Yamamoto K, Sekine M (2014). Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. Journal of Environmental Sciences, 26(6), 1223-1231.Lavrovsky V (2004). Microencapsulated enzyme systems. Enhanced oil recovery and bioremediation. Lemming G, Hauschild M, Bjerg P (2009). Life cycle assessment of soil and groundwater remediation technologies: Literature review. International journal of Life Cycle Assessment, 15(1), 115-127.Li T, Yuan S, Wan J, Lu X (2010). Hydroxypropyl-b-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals. J. Hazard. Mater. 176, 306–312.de Lorenzo V (2008). Systems biology approaches to bioremediation. Curr. Opin. Biotechnol. 19, 579–589.Ma L, Zhuo R, Liu H, Yu D, Jiang M, Zhang X, Yang Y (2014). Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochemical engineering journal, 82, 1-9.Marco-Urrea E, García-Romera I, Aranda E (2015). Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New biotechnology, 32(6), 620-628. Margesin R, Schinner F (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Applied microbiology and biotechnology, 56(5-6), 650-663.Martins MR, Pereira P, Lima N, Cruz-Morais J (2013). Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils. Archives of environmental contamination and toxicology, 65(1), 67-77.McGlashan MA, Tsoflias GP, Schillig PC, Devlin JF, Roberts JA (2012). Field GPR monitoring of biostimulation in saturated porous media. J. Appl. Geophys. 78, 102–112. Meharg AA, Cairney JW, Maguire N (1997). Mineralization of 2, 4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere, 34(12), 2495-2504. Meharg AA, Cairney JW (2000). Ectomycorrhizas extending the capabilities of rhizosphere remediation. Soil Biology and Biochemistry, 32(11-12), 1475-1484.Mohn WW (2004). Biodegradation and bioremediation of halogenated organic compounds. In Biodegradation and bioremediation. Springer Berlin Heidelberg, pp. 125-148.Mougin C, Boukcim H, Jolivalt C (2009). Soil bioremediation strategies based on the use of fungal enzymes. In Advances in Applied Bioremediation. Springer Berlin Heidelberg, pp. 123-149. Mouhamadou B, Faure M, Sage L, Marçais J, Souard F, Geremia RA (2013). Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal biology, 117(4), 268-274.Mrozik A, Piotrowska-Seget Z (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res. 165 (5), 363–375.Nayak V, Pai PV, Pai A, Pai S, Sushma YD, Rao CV (2013). A comparative study of caffeine degradation by four different fungi. Bioremediation journal, 17(2), 79-85.Neifar M, Maktouf S, Ghorbel RE, Jaouani A, Cherif A (2015). Extremophiles as source of novel bioactive compounds with industrial potential. Biotechnology of bioactive compounds: sources and applications. Wiley, Hoboken, 245-268. Nikiforova SV, Pozdnyakova NN, Makarov OE, Chernyshova MP, Turkovskaya OV (2010). Chrysene bioconversion by the white rot fungus Pleurotus ostreatus D1. Microbiology 79, 456–460.Peng J, Zhang Y, Su J, Qiu Q, Jia Z, Zhu YG (2013). Bacterial communities predominant in the degradation of 13C4-4,5,9,10-pyrene during composting. Bioresour. Technol. 143, 608–614. Purnomo AS, Kamei I, Kondo R (2008). Degradation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. Journal of bioscience and bioengineering, 105(6), 614-621.Purnomo AS, Mori T, Takagi K, Kondo R (2011). Bioremediation of DDT contaminated soil using brown-rot fungi. International Biodeterioration & Biodegradation, 65(5), 691-695.Purnomo AS, Mori T, Putra SR, Kondo R (2013). Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. International Biodeterioration & Biodegradation, 82, 40-44.Prescott LM, Harley JP, Klein DA (2002). Microbiology, 5th Edition, McGrawHill, New York, pp 1014. Reddy CA, Mathew ZACHARIA (2001). Bioremediation potential of white rot fungi. In British Mycological Society Symposium Series, Vol. 23, pp. 52-78.Reible D, Demnerova K (2002). Innovative approaches to the on-site assessment and remediation of contaminated sites. Springer Science & Business Media, Vol. 15. Reya I, Prabha LM, Renitta ER (2013). Equilibrium and kinetic studies on biosorption of Cr (VI) using novel Aspergillus jegita isolated from tannery effluent. Research Journal of Chemistry and Environment, 17(4), 72-78.Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011). Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World Journal of Microbiology and Biotechnology, 27(8), 1839-1846.Rosales E, Pazos M, Ángeles Sanromán M (2013). Feasibility of Solid‐State Fermentation Using Spent Fungi‐Substrate in the Biodegradation of PAHs. CLEAN–Soil, Air, Water, 41(6), 610-615.Sabate J, Vinas M, Solanas AM (2004) Laboratory-scale bioremediation experiments on hydrocarboncontaminated soils. International Biodeterioration & Biodegradation 54, 19-25.Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997). Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Applied and Environmental Microbiology, 63(10), 3919-3925.dos Santos Bazanella GC, Araújo CAV, Castoldi R, Maria G, Maciel FDI, Marques, CG, Peralta RM (2016). Ligninolytic enzymes from white-rot fungi and application in the removal of synthetic dyes. Fungal enzymes, 258.Scragg IG, Hensmann M, Bate CA, Kwiatkowski D (1999). Early cytokine induction by Plasmodium falciparum is not a classical endotoxin-like process. European journal of immunology, 29(8), 2636-2644. Schauer-Gimenez AE, Zitomer DH, Maki JS, Struble CA (2010). Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res. 44 (12), 3555–3564.Silambarasan S, Abraham J (2013). Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water, Air, & Soil Pollution, 224(1), 1369.Singh A, Ward OP (2004). Applied bioremediation and phytoremediation. Springer Science & Business Media, Vol. 1. Singh H (2006). Mycoremediation: fungal bioremediation. John Wiley & Sons.Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015). Soil fungi for mycoremediation of arsenic pollution in agriculture soils. Journal of applied microbiology, 119(5), 1278-1290.Sivakumar G, Xu J, Thompson RW, Yang Y, Randol-Smith P, Weathers PJ (2012). Integrated green algal technology for bioremediation and biofuel. Bioresour. Technol. 107, 1–9.Sousa NR, Ramos MA, Marques AP, Castro PM (2014). A genotype dependent-response to cadmium contamination in soil is displayed by Pinus pinaster in symbiosis with different mycorrhizal fungi. Applied Soil Ecology, 76, 7-13. Stamets P (2005). Mycelium Running: How Mushrooms Can Help Save the World. Berkley. Ten Speed Press. Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005). White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. Journal of Industrial Microbiology and Biotechnology, 32(11-12), 651-664.Şener Ş (2010). Çevre için Jeoloji; Ağır Metallerin Çevresel Etkileri. SDUGEO, 1(3), 33-35. Thieman WJ, Palladino MA, Bayraç AT (2013). Biyoremediyasyon. Turło J (2014). The biotechnology of higher fungi-current state and perspectives. Folia Biologica et Oecologica, 10(1), 49-65. Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos S. P, Porto AL (2015). Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatalysis and agricultural biotechnology, 4(2), 266-275. Verma AK, Raghukumar C, Parvatkar RR, Naik CG (2012). A rapid two-step bioremediation of the anthraquinone dye, Reactive Blue 4 by a marine-derived fungus. Water, Air, & Soil Pollution, 223(6), 3499-3509.Vidali M (2001). Bioremediation, An overview. Pure Appl. Chem.73: 163-1172.Wijekoon KC, Fujioka T, McDonald JA, Khan SJ, Hai FI, Price WE, Nghiem LD, (2013). Removal of N-nitrosamines by an aerobic membrane bioreactor. Bioresour. Technol. 141, 41–45.Winquist E (2014). The Potential of Ligninolytic Fungi in Bioremediation of Contaminated Soils. Aalto University publication series Doctoral Dissertations 54. Wu J, Zhao Y, Liu L, Fan B, Li M (2013). Remediation of soil contaminated with decabrominated diphenyl ether using white rot fungi. Journal of Environmental Engineering and Landscape Management, 21(3), 171-179.Wu Y, Hu Z, Kerr PG, Yang L (2011a). A multi-level bioreactor to remove organic matter and metals, together with its associated bacterial diversity. Bioresour. Technol. 102 (2), 736–741. Wu Y, Hu Z, Yang L, Graham B, Kerr PG (2011c). The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour. Technol. 102 (3), 2419–2426. Wu Y, Xia L, Yu Z, Shabbir S, Kerr PG (2014). In situ bioremediation of surface waters by periphytons. Bioresource technology, 151, 367-372. Yan R, Yang F, Wu Y, Hu Z, Nath B, Yang L, Fang Y (2011). Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor. Bioresour. Technol. 102 (21), 9927–9932. Yılmaz M (2015). Türkiye’de kırsal nüfusun değişimi ve illere göre dağılımı (1980-2012). Doğu Coğrafya Dergisi, 20(33): 161-187.Zeyaullah M, Atif M, Islam B, Abdelkafe AS, Sultan P, ElSaady MA, Ali A (2009). Bioremediation: A tool for environmental cleaning. African Journal of Microbiology Research, 3(6), 310-314.
Primary Language tr
Subjects Engineering
Published Date 2018
Journal Section Articles
Authors

Author: Ali VURAL
Country: Turkey


Author: Semra DEMİR (Primary Author)

Author: Gökhan BOYNO

Dates

Publication Date: December 31, 2018

Bibtex @review { yyutbd418430, journal = {Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi}, issn = {1308-7576}, eissn = {1308-7584}, address = {Yuzuncu Yil University}, year = {2018}, volume = {28}, pages = {490 - 501}, doi = {10.29133/yyutbd.418430}, title = {Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması}, key = {cite}, author = {VURAL, Ali and DEMİR, Semra and BOYNO, Gökhan} }
APA VURAL, A , DEMİR, S , BOYNO, G . (2018). Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28 (4), 490-501. DOI: 10.29133/yyutbd.418430
MLA VURAL, A , DEMİR, S , BOYNO, G . "Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28 (2018): 490-501 <http://dergipark.org.tr/yyutbd/issue/42150/418430>
Chicago VURAL, A , DEMİR, S , BOYNO, G . "Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28 (2018): 490-501
RIS TY - JOUR T1 - Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması AU - Ali VURAL , Semra DEMİR , Gökhan BOYNO Y1 - 2018 PY - 2018 N1 - doi: 10.29133/yyutbd.418430 DO - 10.29133/yyutbd.418430 T2 - Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi JF - Journal JO - JOR SP - 490 EP - 501 VL - 28 IS - 4 SN - 1308-7576-1308-7584 M3 - doi: 10.29133/yyutbd.418430 UR - https://doi.org/10.29133/yyutbd.418430 Y2 - 2018 ER -
EndNote %0 Yuzuncu Yıl University Journal of Agricultural Sciences Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması %A Ali VURAL , Semra DEMİR , Gökhan BOYNO %T Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması %D 2018 %J Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi %P 1308-7576-1308-7584 %V 28 %N 4 %R doi: 10.29133/yyutbd.418430 %U 10.29133/yyutbd.418430
ISNAD VURAL, Ali , DEMİR, Semra , BOYNO, Gökhan . "Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 28 / 4 (December 2019): 490-501. https://doi.org/10.29133/yyutbd.418430
AMA VURAL A , DEMİR S , BOYNO G . Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması. YYU J AGR SCI. 2018; 28(4): 490-501.
Vancouver VURAL A , DEMİR S , BOYNO G . Biyoremediasyon ve Fungusların Biyoremediasyonda Kullanılması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2018; 28(4): 501-490.