Year 2019, Volume 29, Issue 1, Pages 1 - 9 2019-03-29

Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi
Change in Soil Temperature Depending on Surface Heat Flow

Çoşkun GÜLSER [1] , İmanverdi EKBERLİ [2] , Amrakh MAMEDOV [3]

78 317

Sıcaklık dalgalarının toprak yüzeyinde ve alt katmanlarında dağılımı, toprak özelliklerinin yanı sıra, toprakların ısı kapasitesi, ısısal yayınım, ısı iletkenliği ve yüzey ısı akışı gibi ısısal özelliklerine de önemli düzeyde bağlıdır. Bu çalışmada, (i) toprak yüzeyinde ısı akışının sabit olması durumunda ısı akışı denkleminin çözümüne ve Fourier kuralına göre toprak yüzey sıcaklığının değişimi irdelenmiş, (ii) toprağın yüzey ısı akışı, yüzey ve alt katman sıcaklıklarının, ısısal yayınımın ve zamanın bir fonksiyonu olarak analitik biçimde ifade edilmiştir. Araştırma döneminde toprağın yüzey ve 10 cm derinliğinde ortalama sıcaklık değerleri 18.5 °C ile 33.1 °C arasında değişmekte, 0-10 cm katmanında ortalama ısısal yayınım katsayısı ise ’dir. Kuru toprağın özgül ve hacimsel ısı kapasiteleri sırasıyla  (veya ) ve ; hacimsel nem içeriği , nem içeriğine bağlı hacimsel ısı kapasitesi , ısı iletkenliğine  ait ortalama değerler ise sırasıyla ;  (veya );  olarak belirlenmiştir. Toprak yüzeyindeki ısı akışı günün 09.00-15.00 saatlerinde 25.638 ile 239.742  arasında yüzeyden alt katmana doğru değişmekte; 15.00-17.00 saatlerinde ise -27.725 ile -12.473  arasında genel olarak alt katmandan yüzeye doğru değişmektedir. Hesaplanan ve ölçülen toprak yüzey sıcaklık değerleri arasındaki ortalama nispi hata % 7.10 olarak bulunmuştur. Toprakların yüzey sıcaklık değişimlerinin matematiksel olarak ifade edilmesi, ısısal özelliklere ait sayısal değerlerin belirlenmesi toprak sıcaklığının modellenmesinde gerekli aşamalardan birisi olup, nemli ve kurak bölgelerde iklim değişikliğini göz önüne alarak toprak yönetim uygulamalarının toprak sıcaklığı üzerine olan etkilerinin izlenmesi bakımından da önemlidir.Sıcaklık dalgalarının toprak yüzeyinde ve alt katmanlarında dağılımı, toprak özelliklerinin yanı sıra, toprakların ısı kapasitesi, ısısal yayınım, ısı iletkenliği ve yüzey ısı akışı gibi ısısal özelliklerine de önemli düzeyde bağlıdır. Bu çalışmada, (i) toprak yüzeyinde ısı akışının sabit olması durumunda ısı akışı denkleminin çözümüne ve Fourier kuralına göre toprak yüzey sıcaklığının değişimi irdelenmiş, (ii) toprağın yüzey ısı akışı, yüzey ve alt katman sıcaklıklarının, ısısal yayınımın ve zamanın bir fonksiyonu olarak analitik biçimde ifade edilmiştir. Araştırma döneminde toprağın yüzey ve 10 cm derinliğinde ortalama sıcaklık değerleri 18.5 °C ile 33.1 °C arasında değişmekte, 0-10 cm katmanında ortalama ısısal yayınım katsayısı ise ’dir. Kuru toprağın özgül ve hacimsel ısı kapasiteleri sırasıyla  (veya ) ve ; hacimsel nem içeriği , nem içeriğine bağlı hacimsel ısı kapasitesi , ısı iletkenliğine  ait ortalama değerler ise sırasıyla ;  (veya );  olarak belirlenmiştir. Toprak yüzeyindeki ısı akışı günün 09.00-15.00 saatlerinde 25.638 ile 239.742  arasında yüzeyden alt katmana doğru değişmekte; 15.00-17.00 saatlerinde ise -27.725 ile -12.473  arasında genel olarak alt katmandan yüzeye doğru değişmektedir. Hesaplanan ve ölçülen toprak yüzey sıcaklık değerleri arasındaki ortalama nispi hata % 7.10 olarak bulunmuştur. Toprakların yüzey sıcaklık değişimlerinin matematiksel olarak ifade edilmesi, ısısal özelliklere ait sayısal değerlerin belirlenmesi toprak sıcaklığının modellenmesinde gerekli aşamalardan birisi olup, nemli ve kurak bölgelerde iklim değişikliğini göz önüne alarak toprak yönetim uygulamalarının toprak sıcaklığı üzerine olan etkilerinin izlenmesi bakımından da önemlidir.

Distribution of temperature waves at soil surface and subsurface layers depends on thermal properties (soil heat capacity, diffusivity and conductivity etc.) and surface heat flow, as well as basic soil properties. In this study, (i) change in soil surface temperature was examined according to solution of heat conductivity equation and Fourier law in case of constant heat flow on soil surface, and (ii) surface heat flow of soil was described analytically as a function of surface and sublayers temperatures, heat diffusivity and time. During the experimental period, mean soil temperature at the surface and 10 cm depth varied between 18.5 °C and 33.1 °C, where the mean thermal diffusivity coefficient (a) in this layer was  sec-1.. The mean of specific and volumetric heat capacities of dry soil were  (or ) and , respectively. Soil volumetric moisture content , volumetric heat capacity  associated with moisture content, thermal conductivity were ,  (or ) and , respectively. The heat flow at the soil surface varied between 25.638 and 239.742changing from surface to deeper soil layers during 09.00-15.00 hours, whereas during 15.00-17.00 hours heat flow varied between -27.725 and -12.473changing from lower to upper soil layers. Mean relative errors between measured and predicted soil surface temperature values were 7.10%. Predicting surface temperature changes of soils mathematically, and determination of numerical values of thermal properties is one of the necessary stages for modelling soil temperature, and important for monitoring the effect of soil management on soil temperature in both humid and arid regions with consideration of climate change.

  • Agam N, Berliner PR, Zangvil A, Ben-Dor E (2004). Soil water evaporationduring the dry season in an arid zone. Journal of Geophysical Research, 109 (D16103), http://dx.doi.org/10.1029/2004JD004802.Agam N, Kustas, WP, Evett SR, Colaizzi PD, Cosh M, McKee LG (2012). Soilheat flux variability influenced by row direction in irrigated cotton. Advances Water in Resources, 50: 20–30.Allen RG, Periera LS, Raes D, Smith M (1998). Crop evapotranspiration:guidelines for computing crop water requirements. In: Irrigation and DrainagePaper No. 56. United Nations FAO, Rome, Italy.Arias-Penas D, Castro-Garcia MP, Rey-Ronco MA, Alonso-Sanchez T (2015). Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study QTHERMIE-UNIOVI. Geothermics, 54: 35–42.Bittelli M, Ventura F, Campbell GS, Snyder RL, Gallegati F, Pisa PR (2008). Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. Journal of Hydrology, 362: 191–205.Chen Y, Shi M, Li X (2006). Experimental investigation on heat, moisture and salt transfer in soil. International Communications in Heat and Mass Transfer, 33: 1122-1129. Colaizzi PD, Evett SR, Agam N, Schwartz RC, Kustas WP (2016). Soil heat flux calculation for sunlit and shaded surfaces under rowcrops: 1. Model development and sensitivity analysis. Agricultural and Forest Meteorology, 216: 115–128.Correia A, Vieira G, Ramos M (2012). Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11.Deardorff JW (1978). Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research, 83: 1889–1903.Dengiz O, Ekberli İ (2017). Bazı vertisol alt grup topraklarının fizikokimyasal ve ısısal özelliklerinin incelenmesi. Akademik Ziraat Dergisi, 6(1): 45-52. de Silans AP, Monteny BA, Lhomme JP (1997). The correction of soil heat flux measurements to derive an accurate surface energy balance by the Bowen ratio method. Journal of Hydrology, 89: 453–465.Ekberli İ (2006a). Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesinin Dergisi, 21(2): 179-189.Ekberli I (2006b). Determination of initial unconditional solution of heat conductivity equation for evaluation of temperature variance in finite soil layer. Journal of Applied Sciences, 6(7): 1520-1526. Ekberli İ, Dengiz O (2016). Bazı ınceptisol ve entisol alt grup topraklarının fizikokimyasal özellikleriyle ısısal yayınım katsayısı arasındaki regresyon ilişkilerin belirlenmesi. Toprak Su Dergisi, 5(2): 1-10.Ekberli İ, Dengiz O, Gülser C, Özdemir N (2016). Benzerlik teorisinin toprak sıcaklığına uygulanabilirliği. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (2): 63–68. Ekberli İ, Gülser C, Mamedov A (2015b). Toprakta bir boyutlu ısı iletkenlik denkleminin incelenmesinde benzerlik teorisinin uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79. Ekberli İ, Gülser C, Özdemir N (2005). Toprakların termo-fiziksel özellikleri ve ısısal yayınım katsayısının değerlendirilmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesinin Dergisi, 20(2): 85-91.Ekberli İ, Gülser C, Özdemir N (2015a). Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. Anadolu Tarım Bilimleri Dergisi, 30(3): 300-306.Ekberli İ, Gülser C, Özdemir N (2017). Farklı toprak derinliklerindeki sıcaklığın tahmininde parabolik fonksiyonun kullanımı. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (1); 34- 38. Ekberli İ, Sarılar Y (2015a). Toprak sıcaklığının profil boyunca sönme derinliğinin ve gecikme zamanının belirlenmesi. Ege Üniversitesi Ziraat Fakültesinin Dergisi, 52 (2): 219-225.Ekberli İ, Sarılar Y (2015b). Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. AnadoluTarım Bilimleri Dergisi, 30(1): 74-85. Evett SR, Agam N, Kustas WP, Colaizzi PD, Schwartz RC (2012). Soil profilemethod for soil thermal diffusivity, conductivity, and heat flux: comparison tosoil heat flux plates. Advances Water in Resources, 50: 41–54.Florentin A, Agam N (2017). Estimating non-rainfall-water-inputs-derived latent heat flux with turbulence-based methods. Agricultural and Forest Meteorology, 247: 533–540.Foken T (2008). The energy balance closure problem: an overview. Ecological Applications, 18: 1351-1367. Fourier JBJ (1822). Théorie analytique de la chaleur (The Analytical Theory of Heat). Paris, 676 p. Gao ZQ, Fan XG, Bian LG (2003). An analytical solution to one-dimensional thermal conduction–convection in soil. Soil Science, 168: 99-107.Guaraglia DO, Pousa JL, Pilan L (2001). Predicting temperature and heat flow in a sandy soil by electrical modeling. Soil Science Society America Journal, 65:1074-1080.Gülser C, Ekberli İ (2002). Toprak sıcaklığının profil boyunca değişimi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesinin Dergisi, 17(3): 43-47.Hanks RJ, Ashcroft GJ (1980). Applied soil physics. Soil water and temperature applications. Springer-Verlag Berlin Heidelberg, pp. 125-144.Han Z, Li B, Ma C, Hu H, Bai C (2018). Study on accurate identification of soil thermal properties under different experimental parameters. Energy & Buildings, 164: 21-32.Heusinkveld BG, Jacobs AFG, Holtslag AAM, Berkowicz SM (2004). Surface energy balance closure in an arid region: role of soil heat flux. Agricultural and Forest Meteorology, 122: 21–37.Hilel D (2004). Introduction to environmental soil physics. Elsevier Academic Press, USA, pp. 215-233.Holmes TRH, Owe M, De Jeu RAM, Kooi H (2008). Estimating the soil temperature profile from a single depth observation: a simple empirical heatflow solution. Water Resources Research, 44: W02412, doi: 10.1029/2007WR005994.Horton R, Wierenga PJ (1983). Estimating the soil heat flux from observations of soil temperature near the surface. Soil Science Society America Journal, 47: 14-20.Huang C, Chen W, Li Y, Shen H, Li X (2016). Assimilating multi-source data into land surface model tosimultaneously improve estimations of soil moisture, soiltemperature, and surface turbulent fluxes in irrigated fields. Agricultural and Forest Meteorology, 230-231: 142-156.Isachenko VP, Osipova VA, Sukomel AS. 1981. Heat transfer (in Russian). Energoizdat Press, Moscow, 417 p. Kayaci N, Demir H (2018). Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump. Geothermics, 73: 33-47.Knight JH, Minasny B, McBratney AB, Koen TB, Murphy BW (2018). Soil temperature increase in eastern Australia for the past 50 years. Geoderma, 313: 241–249.Kreith F, Black WZ (1983). Bazic Heat Transfer (in Russian). Press Mir, Moscow, 512 p.Kustas WP, Prueger JH, Hatfield JL, Ramalingam K, Hipps LE (2000).Variability in soil heat flux from a mesquite dune site. Agricultural and Forest Meteorology, 103: 249–264.Liu BC, Liu W, Peng SW (2005). Study of heat and moisture transfer in soil with a dry surface layer. International Journal of Heat and Mass Transfer, 48: 4579-4589.Luikov AV (1948). Heat conductivity of nonstationary processes (in Russian). State Energy Press (Gosudarstvennoye energetiçeskoye izdatelstvo), Moscow-Leningrad, 232 p.Luikov AV (1967). Theory of thermal conductivity (in Russian). Vysshaya Shkola Press, Moscow, 599 p. Luikov AV, Mikhailov YuA (1965). Theory of energy and mass transfer. Pergamon Press, Oxford, England, 392 p. Mahdavi SM, Neyshabouri MR, Fujimaki H, Heris AM (2017). Coupled heat and moisture transfer and evaporation in mulched soils. Catena, 151: 34-48. McCumber MC, Pielke RA (1981). Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model 1. Soil layer. Journal of Geophysical Research, 86: 9929-9938.Muerth M, Mauser W (2012). Rigorous evaluation of a soil heat transfer model for mesoscale climate change impact studies. Environmental Modelling & Software, 35: 149-162.Nunez CM, Varas EA, Meza FJ (2010). Modelling soil heat flux. Theoretical and Applied Climatology, 100: 251-260.Ochsner TE, Sauer TJ, Horton R (2006). Field tests of the soil heat flux plate method and some alternatives. Agronomy Journal, 98 (4): 1005–1014.Oosterkamp A, Ytrehus T, Galtung ST (2016). Effect of the choice of boundary conditions on modelling ambient to soil heat transfer near a buried pipeline. Applied Thermal Engineering, 100: 367-377. Peng X, Heitman J, Horton R, Ren T (2015). Field evaluation and improvement of the plate method for measuring soil heat flux density. Agricultural and Forest Meteorology, 214-215: 341–349. Russell ES, Liu H, Gao Z, Finn D, Lamb B (2015). Impacts of soil heat flux calculation methods on thesurface energy balance closure. Agricultural and Forest Meteorology, 214-215: 189–200. Sauer TJ, Horton R (2005). Soil heat flux. In: Hatfield, J.L., Baker, J.M. (Eds.), Micrometeorology in Agricultural Systems. Agronomy Monograph No. 47. American Society of Agronomy, Madison, WI, pp. 131–154.Shao C, Chen J, Li L, Xu W, Chen S, Gwen T, Xu J, Zhang W (2008). Spatialvariability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricultural and Forest Meteorology, 148: 1433–1443.Trombotto D, Borzotta E (2009). Indicators of present global warming through changes in active layerthickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321–330.Usowicz B, Łukowski MI, Rüdiger C, Walker JP, Marczewski W (2017). Thermal properties of soil in the Murrumbidgee River Catchment (Australia). International Journal of Heat and Mass Transfer, 115: 604-614. Vogel T, Dohnal M, Votrubova J (2011). Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. Journal of Hydrology, 402: 367–376.Wang ZH (2012). Reconstruction of soil thermal field from a single depth measurement. Journal of Hydrology, 464–465: 541–549. Wang ZH, Bou-Zeid E (2011). Comment on ‘‘Impact of wave phase difference between soil surface heat flux and soil surface temperature on soil surface energy balance closure’’ by Z. Gao, R. Horton, and H. P. Liu. Journal of Geophysical Research, 116, D08110. doi: 10.1029/2010JD015117. Wang ZH, Bou-Zeid E (2012). A novel approach for the estimation of soil ground heat flux. Agricultural and Forest Meteorology, 154–155: 214–221.Wang J, Bras RL (1999). Ground heat flux estimated from surface soil temperature. Journal of Hydrology, 216: 214–226.
Primary Language tr
Subjects Engineering
Published Date 2019
Journal Section Articles
Authors

Author: Çoşkun GÜLSER

Author: İmanverdi EKBERLİ (Primary Author)
Institution: OMÜ Ziraat Fakültesi, Toprak Bilimi ve Bitki Besleme Bölümü
Country: Turkey


Author: Amrakh MAMEDOV

Dates

Publication Date: March 29, 2019

Bibtex @research article { yyutbd426847, journal = {Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi}, issn = {1308-7576}, eissn = {1308-7584}, address = {Yuzuncu Yil University}, year = {2019}, volume = {29}, pages = {1 - 9}, doi = {10.29133/yyutbd.426847}, title = {Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi}, key = {cite}, author = {GÜLSER, Çoşkun and EKBERLİ, İmanverdi and MAMEDOV, Amrakh} }
APA GÜLSER, Ç , EKBERLİ, İ , MAMEDOV, A . (2019). Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29 (1), 1-9. DOI: 10.29133/yyutbd.426847
MLA GÜLSER, Ç , EKBERLİ, İ , MAMEDOV, A . "Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (2019): 1-9 <http://dergipark.org.tr/yyutbd/issue/44253/426847>
Chicago GÜLSER, Ç , EKBERLİ, İ , MAMEDOV, A . "Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 (2019): 1-9
RIS TY - JOUR T1 - Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi AU - Çoşkun GÜLSER , İmanverdi EKBERLİ , Amrakh MAMEDOV Y1 - 2019 PY - 2019 N1 - doi: 10.29133/yyutbd.426847 DO - 10.29133/yyutbd.426847 T2 - Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi JF - Journal JO - JOR SP - 1 EP - 9 VL - 29 IS - 1 SN - 1308-7576-1308-7584 M3 - doi: 10.29133/yyutbd.426847 UR - https://doi.org/10.29133/yyutbd.426847 Y2 - 2019 ER -
EndNote %0 Yuzuncu Yıl University Journal of Agricultural Sciences Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi %A Çoşkun GÜLSER , İmanverdi EKBERLİ , Amrakh MAMEDOV %T Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi %D 2019 %J Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi %P 1308-7576-1308-7584 %V 29 %N 1 %R doi: 10.29133/yyutbd.426847 %U 10.29133/yyutbd.426847
ISNAD GÜLSER, Çoşkun , EKBERLİ, İmanverdi , MAMEDOV, Amrakh . "Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi". Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 29 / 1 (March 2019): 1-9. https://doi.org/10.29133/yyutbd.426847
AMA GÜLSER Ç , EKBERLİ İ , MAMEDOV A . Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi. YYU J AGR SCI. 2019; 29(1): 1-9.
Vancouver GÜLSER Ç , EKBERLİ İ , MAMEDOV A . Toprak Sıcaklığının Yüzey Isı Akışına Bağlı Olarak Değişimi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 2019; 29(1): 9-1.