Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 14 Sayı: 1, 135 - 140, 30.03.2018
https://doi.org/10.18466/cbayarfbe.390277

Öz

Kaynakça

  • 1. Edwards, C. A, The importance of earthworms as key representatives of the soil fauna. In: Edwards C.A.(ed) Earthworm Ecology, 2nd edn. CRC press, NY, Washington, 2004, pp 3-11.
  • 2. Dominguez, J, Edwards, C.A, Subler, S, A comparison of vermicomposting and composting, Biocycle, 1997, 38(4), 57-59.
  • 3. Blouin, M, Hodson, M.E, Delgado, E.A, Baker, G, Brussaard, L, Butt, K.R, Dai, J, Dendooven, L, Peres, G, Tondoh, J.E, Cluzeau, D, Brun, J.J, A review of earthworm impact on soil function and ecosystem services, European Journal of Soil Science, 2013, 64(2), 161-82.
  • 4. Gómez-Brandón, M, Domínguez, J, Recycling of solid organic wastes through vermicomposting: microbial community changes throughout the process and use of vermicompost as a soil amendment, Critical Reviews in Environmental Science and Technology, 2014, 44(12), 1289-1312.
  • 5. Bouché, M.B, Strategies lombriciennes. In: U, Lohm, T, Persson(ed) Soil Organism as Components of Ecosystems, 1nd edn, Stockholm, 1977, pp 122-132.
  • 6. Deka, H, Deka, S, Baruah, C. K, Das, J, Hoque, S, Sarma, H, Sarma, N. S, Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of Java citronella--an aromatic oil yielding plant, Bioresource Technology, 2011, 102(24), 11212-11217.
  • 7. Ponmani, S, Udayasoorian, C, Jayabalakrishnan, R. M, Kumar, K. V, Vermicomposting of paper mill solid waste using epigeic earthworm Eudrilus eugeniae, Journal of Environmental Biology, 2014, 35(4), 617-622.
  • 8. Suthar, S, Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials, Bioresource Technology, 2007, 98(6), 1231-1237.
  • 9. Cheng, J, Zhao, Z, Li, B, Qin, C, Wu, Z, Trejo-Saavedra, D. L, Luo, X, Cui, J, Rivera-Bustamante, R. F, Li, S, Hu, K, A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum, Scientific Reports, 2016, 6, 18919.
  • 10. Eujayl, I, Sledge, M. K, Wang, L, May, G. D, Chekhovskiy, K, Zwonitzer, J. C, Mian, M. A, Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp, Theoretical and Applied Genetics, 2004, 108(3), 414-422.
  • 11. Bolger, A. M, Lohse, M, Usadel, B, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, 30(15), 2114-2120.
  • 12. Haas, B. J, A, Papanicolaou, M, Yassour, M, Grabherr, P. D, Blood, J, Bowden, M. B, Couger, D, Eccles, B, Li, M, Lieber, M. D, MacManes, M. Ott, J, Orvis, N, Pochet, F, Strozzi, N, Weeks, R, Westerman, T, William, C. N, Dewey, R, Henschel, R. D, LeDuc, N, Friedman, A, Regev, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nature Protocols, 2013, 8(8), 1494-512.
  • 13. Huang, Y, Niu, B, Gao, Y, Fu, L, Li, W, CD-HIT Suite: a web server for clustering and comparing biological sequences, Bioinformatics, 2010, 26(5), 680-682.
  • 14. Nishimura, O, Hara, Y, Kuraku, S, gVolante for standardizing completeness assessment of genome and transcriptome assemblies, Bioinformatics, 2017, 33(22), 3635-3637.
  • 15. Simão, F. A, Waterhouse, R. M, Ioannidis, P, Kriventseva, E. V, Zdobnov, E. M, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, 2015, 31(19), 3210-3212.
  • 16. Jiang, Q, Li, Q, Yu, H, Kong, L, Genome-wide analysis of simple sequence repeats in marine animals-a comparative approach, Marine Biotechnology, 2014, 16(5), 604-619.
  • 17. Zwarycz, A. S, Nossa, C. W, Putnam, N. H, Ryan, J. F, Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida, Genome Biology and Evolution, 2015, 8(1), 271-281.
  • 18. Csuzdi, C, Zicsi, A, Misirlioğlu, M, An annotated checklist of the earthworm fauna of Turkey (Oligochaeta: Lumbricidae), Zootaxa, 2006, 1175, 1-29.
  • 19. Mısırlıoğlu, M, Valchovski, H, Contributions to Earthworm (Clitellata; Annelida) Fauna of Turkish Thrace, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017, 21(3), 385-388.
  • 20. Bhambri, A, Dhaunta, N, Patel, S. S, Hardikar, M, Srikakulam, N, Shridhar, S, Vellarikkal, S, Suryawanshi, H, Pandey, R, Jayarajan, R, Verma, A, Kumar, V, Bhatt, A, Gautam, P, Rai, M, Khan, J. A, Fromm, B, Peterson, K. J, Scaria, V, Sivasubbu, S, Pillai, B, Insights into regeneration from the genome, transcriptome and metagenome analysis of Eisenia fetida, bioRxiv,2017.

Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826)

Yıl 2018, Cilt: 14 Sayı: 1, 135 - 140, 30.03.2018
https://doi.org/10.18466/cbayarfbe.390277

Öz

Earthworms
belong to the main groups of soil-dwelling invertebrates and are an important
element for soil biota. The ecological importance of earthworms on terrestrial
ecosystem is mainly attributed to their close synergistic interaction with soil
biota. Among earthworms, Eisenia fetida
has been considered as preferred for vermiculture and vermicomposting practices
due to their reproductive potentials, short life cycle and wide temperature and
density pressure tolerances. Although the genome and transcriptome data for E. fetida are available, the EST-SSRs
composition and frequency of this species, which used for phylogenetic studies,
genus-level taxonomy and population genetics, remain poorly defined. In current
study, we mined publicly available transcriptome data and characterised
genome-wide EST-SSR markers for this epigeic species. A total of 13,060
EST-SSRs were identified from 162,609 contigs. The most abundant EST-SSR types
were found to be trimeric repeats (5,998, 46%) followed by dimeric (4,762, 36%),
tetrameric (1,716, 13%), pentameric (478, 4%) and hexameric repeats (106, 1%).
For SSR motifs, the most prevalent motifs were AC/GT (14.72%), followed by
AT/AT (13.20%), ATC/ATG (13.03%), AAT/ATT (12.30%) and AG/CT (8.46%). Following
validation of the species using COI sequences and to test the designed primer
pairs, the eight primer pairs were designed, but only six of them were
successfully amplified. Although EST-SSR information is scarce for annelids,
the EST-SSR patterns of E. fetida
seem to be similar to annelids. Overall, the EST-SSR markers help in taxonomic
resolution of Eisenia genus from
other earthworm genera and in studying the population structure and geographic
distributions of E. fetida.

Kaynakça

  • 1. Edwards, C. A, The importance of earthworms as key representatives of the soil fauna. In: Edwards C.A.(ed) Earthworm Ecology, 2nd edn. CRC press, NY, Washington, 2004, pp 3-11.
  • 2. Dominguez, J, Edwards, C.A, Subler, S, A comparison of vermicomposting and composting, Biocycle, 1997, 38(4), 57-59.
  • 3. Blouin, M, Hodson, M.E, Delgado, E.A, Baker, G, Brussaard, L, Butt, K.R, Dai, J, Dendooven, L, Peres, G, Tondoh, J.E, Cluzeau, D, Brun, J.J, A review of earthworm impact on soil function and ecosystem services, European Journal of Soil Science, 2013, 64(2), 161-82.
  • 4. Gómez-Brandón, M, Domínguez, J, Recycling of solid organic wastes through vermicomposting: microbial community changes throughout the process and use of vermicompost as a soil amendment, Critical Reviews in Environmental Science and Technology, 2014, 44(12), 1289-1312.
  • 5. Bouché, M.B, Strategies lombriciennes. In: U, Lohm, T, Persson(ed) Soil Organism as Components of Ecosystems, 1nd edn, Stockholm, 1977, pp 122-132.
  • 6. Deka, H, Deka, S, Baruah, C. K, Das, J, Hoque, S, Sarma, H, Sarma, N. S, Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of Java citronella--an aromatic oil yielding plant, Bioresource Technology, 2011, 102(24), 11212-11217.
  • 7. Ponmani, S, Udayasoorian, C, Jayabalakrishnan, R. M, Kumar, K. V, Vermicomposting of paper mill solid waste using epigeic earthworm Eudrilus eugeniae, Journal of Environmental Biology, 2014, 35(4), 617-622.
  • 8. Suthar, S, Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials, Bioresource Technology, 2007, 98(6), 1231-1237.
  • 9. Cheng, J, Zhao, Z, Li, B, Qin, C, Wu, Z, Trejo-Saavedra, D. L, Luo, X, Cui, J, Rivera-Bustamante, R. F, Li, S, Hu, K, A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum, Scientific Reports, 2016, 6, 18919.
  • 10. Eujayl, I, Sledge, M. K, Wang, L, May, G. D, Chekhovskiy, K, Zwonitzer, J. C, Mian, M. A, Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp, Theoretical and Applied Genetics, 2004, 108(3), 414-422.
  • 11. Bolger, A. M, Lohse, M, Usadel, B, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, 30(15), 2114-2120.
  • 12. Haas, B. J, A, Papanicolaou, M, Yassour, M, Grabherr, P. D, Blood, J, Bowden, M. B, Couger, D, Eccles, B, Li, M, Lieber, M. D, MacManes, M. Ott, J, Orvis, N, Pochet, F, Strozzi, N, Weeks, R, Westerman, T, William, C. N, Dewey, R, Henschel, R. D, LeDuc, N, Friedman, A, Regev, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nature Protocols, 2013, 8(8), 1494-512.
  • 13. Huang, Y, Niu, B, Gao, Y, Fu, L, Li, W, CD-HIT Suite: a web server for clustering and comparing biological sequences, Bioinformatics, 2010, 26(5), 680-682.
  • 14. Nishimura, O, Hara, Y, Kuraku, S, gVolante for standardizing completeness assessment of genome and transcriptome assemblies, Bioinformatics, 2017, 33(22), 3635-3637.
  • 15. Simão, F. A, Waterhouse, R. M, Ioannidis, P, Kriventseva, E. V, Zdobnov, E. M, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, 2015, 31(19), 3210-3212.
  • 16. Jiang, Q, Li, Q, Yu, H, Kong, L, Genome-wide analysis of simple sequence repeats in marine animals-a comparative approach, Marine Biotechnology, 2014, 16(5), 604-619.
  • 17. Zwarycz, A. S, Nossa, C. W, Putnam, N. H, Ryan, J. F, Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida, Genome Biology and Evolution, 2015, 8(1), 271-281.
  • 18. Csuzdi, C, Zicsi, A, Misirlioğlu, M, An annotated checklist of the earthworm fauna of Turkey (Oligochaeta: Lumbricidae), Zootaxa, 2006, 1175, 1-29.
  • 19. Mısırlıoğlu, M, Valchovski, H, Contributions to Earthworm (Clitellata; Annelida) Fauna of Turkish Thrace, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017, 21(3), 385-388.
  • 20. Bhambri, A, Dhaunta, N, Patel, S. S, Hardikar, M, Srikakulam, N, Shridhar, S, Vellarikkal, S, Suryawanshi, H, Pandey, R, Jayarajan, R, Verma, A, Kumar, V, Bhatt, A, Gautam, P, Rai, M, Khan, J. A, Fromm, B, Peterson, K. J, Scaria, V, Sivasubbu, S, Pillai, B, Insights into regeneration from the genome, transcriptome and metagenome analysis of Eisenia fetida, bioRxiv,2017.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Vahap Eldem 0000-0003-3767-5661

Yayımlanma Tarihi 30 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 14 Sayı: 1

Kaynak Göster

APA Eldem, V. (2018). Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826). Celal Bayar University Journal of Science, 14(1), 135-140. https://doi.org/10.18466/cbayarfbe.390277
AMA Eldem V. Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826). CBUJOS. Mart 2018;14(1):135-140. doi:10.18466/cbayarfbe.390277
Chicago Eldem, Vahap. “Genome-Wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia Fetida (Savigny, 1826)”. Celal Bayar University Journal of Science 14, sy. 1 (Mart 2018): 135-40. https://doi.org/10.18466/cbayarfbe.390277.
EndNote Eldem V (01 Mart 2018) Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826). Celal Bayar University Journal of Science 14 1 135–140.
IEEE V. Eldem, “Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826)”, CBUJOS, c. 14, sy. 1, ss. 135–140, 2018, doi: 10.18466/cbayarfbe.390277.
ISNAD Eldem, Vahap. “Genome-Wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia Fetida (Savigny, 1826)”. Celal Bayar University Journal of Science 14/1 (Mart 2018), 135-140. https://doi.org/10.18466/cbayarfbe.390277.
JAMA Eldem V. Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826). CBUJOS. 2018;14:135–140.
MLA Eldem, Vahap. “Genome-Wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia Fetida (Savigny, 1826)”. Celal Bayar University Journal of Science, c. 14, sy. 1, 2018, ss. 135-40, doi:10.18466/cbayarfbe.390277.
Vancouver Eldem V. Genome-wide EST-SSR Marker Identification in Red Wiggler Worm Eisenia fetida (Savigny, 1826). CBUJOS. 2018;14(1):135-40.