Araştırma Makalesi

Evaluation of Posterior Ocular Structures in Patients with Schizophrenia

- , 01.09.2019
https://doi.org/10.16919/bozoktip.566862

Öz

Purpose: We
aimed to evaluate the effects of schizophrenia
on posterior ocular structures including the retinal nerve fiber layer (RNFL),
central macular thickness (CMT), choroidal thickness (CT) and lamina cribrosa
(LC) measurements.

Methods:
A
total of 35 patients with schizophrenia and 35 healthy individuals were
enrolled. Only the right eye of each participant was tested. RNFL thickness in
all quadrants, CT, CMT, LC thickness, and LC depth (LCD) measurements were
performed using Fourier domain optic coherence tomography (OCT), and each
variable was compared between groups.

Results:
The mean age and sex distributions were similar between groups (p=0.528
and p=0.299, respectively). The
average, superior, inferior, nasal, and temporal RNFL thicknesses were significantly
lower in schizophrenia patients than in controls (p<0.001, p<0.001,
p=0.001, p=0.002
and p<0.001, respectively). The mean subfoveal and
perifoveal CT were not significantly different between the groups (subfoveal; p=0.676,
1.5 mm nasal; p=0.632, 3 mm nasal; p=1.000, 1.5 mm temporal; p=0.811, 3 mm temporal; p=0.145). The mean CMT was
similar among the groups (p=0.678).
LC thickness and LCD were not statistically significant between groups (p=0.816 and p=0.161).

Conclusions:
We
demonstrated that RNFL thicknesses in all quadrants were significantly lower in
schizophrenia patients than in control subjects. However, there were no
significant differences in the CMT, perifoveal and subfoveal CT, LC thickness,
and LCD between the groups. These
results suggest that OCT can be used to image neuronal loss by
evaluating the RNFL in patients with schizophrenia.









Keywords: Schizophrenia;
retinal nerve fiber layer; choroidal thickness; lamina cribrosa thickness;
macular thickness

Kaynakça

  • 1. Nasrallah H, Tandon R, Keshavan M. Beyond the facts in schizophrenia: closing the gaps in diagnosis, pathophysiology, and treatment. Epidemiology and Psychiatric Sciences. 2011;20(4):317-27.
  • 2. Woods BT, Ward KE, Johnson EH. Meta-analysis of the time-course of brain volume reduction in schizophrenia: implications for pathogenesis and early treatment. Schizophr Res. 2005;73(2-3):221-8.
  • 3. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003;361(9354):281-8.
  • 4. Almarcegui C, Dolz I, Pueyo V, Garcia E, Fernandez FJ, Martin J, et al. Correlation between functional and structural assessments of the optic nerve and retina in multiple sclerosis patients. Neurophysiol Clin. 2010;40(3):129-35.
  • 5. Ong YT, Hilal S, Cheung CY, Venketasubramanian N, Niessen WJ, Vrooman H, et al. Retinal neurodegeneration on optical coherence tomography and cerebral atrophy. Neurosci Lett. 2015;584:12-6.
  • 6. Lalor EC, De Sanctis P, Krakowski MI, Foxe JJ. Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account? Schizophr Res. 2012;139(1-3):246-52.
  • 7. Yilmaz U, Kucuk E, Ulgen A, Ozkose A, Demircan S, Ulusoy DM, et al. Retinal nerve fiber layer and macular thickness measurement in patients with schizophrenia. Eur J Ophthalmol. 2016;26(4):375-8.
  • 8. Silverstein SM, Paterno D, Cherneski L, Green S. Optical coherence tomography indices of structural retinal pathology in schizophrenia. Psychol Med. 2018;48(12):2023-33.
  • 9. Kwun Y, Han JC, Kee C. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect. Am J Ophthalmol. 2015;159(3):512-8.e1.
  • 10. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013.
  • 11. Gonzalez-Garcia AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol. 2009;147(6):1067-74, 74.e1.
  • 12. Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117(4):738-46.
  • 13. Park H-YL, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119(1):10-20.
  • 14. Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. American journal of ophthalmology. 2008;146(4):496-500.
  • 15. Yeap S, Kelly SP, Sehatpour P, Magno E, Garavan H, Thakore JH, et al. Visual sensory processing deficits in Schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosci. 2008;258(5):305-16.
  • 16. Bangalore SS, Goradia DD, Nutche J, Diwadkar VA, Prasad KM, Keshavan MS. Untreated illness duration correlates with gray matter loss in first-episode psychoses. Neuroreport. 2009;20(7):729-34.
  • 17. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res. 2009;108(1-3):3-10.
  • 18. Ascaso FJ, Laura C, Quintanilla MÁ, Gutiérrez Galve L, López-Antón R, Cristóbal JA, et al. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: a short report. The European Journal of Psychiatry. 2010;24(4):227-35.
  • 19. Cabezon L, Ascaso F, Ramiro P, Quintanilla M, Gutierrez L, Lobo A, et al. Optical coherence tomography: a window into the brain of schizophrenic patients. Acta Ophthalmol (Copenh). 2012;90.
  • 20. Ascaso FJ, Rodriguez-Jimenez R, Cabezon L, Lopez-Anton R, Santabarbara J, De la Camara C, et al. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: Influence of recent illness episodes. Psychiatry Res. 2015;229(1-2):230-6.
  • 21. Lee WW, Tajunisah I, Sharmilla K, Peyman M, Subrayan V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7785-92.
  • 22. Chu EM, Kolappan M, Barnes TR, Joyce EM, Ron MA. A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res. 2012;203(1):89-94.
  • 23. Meier MH, Shalev I, Moffitt TE, Kapur S, Keefe RS, Wong TY, et al. Microvascular abnormality in schizophrenia as shown by retinal imaging. Am J Psychiatry. 2013;170(12):1451-9.
  • 24. Schonfeldt-Lecuona C, Kregel T, Schmidt A, Pinkhardt EH, Lauda F, Kassubek J, et al. From Imaging the Brain to Imaging the Retina: Optical Coherence Tomography (OCT) in Schizophrenia. Schizophr Bull. 2016;42(1):9-14.
  • 25. Joe P, Ahmad M, Riley G, Weissman J, Smith RT, Malaspina D. A pilot study assessing retinal pathology in psychosis using optical coherence tomography: Choroidal and macular thickness. Psychiatry Res. 2018;263:158-61.
  • 26. Downs JC, Girkin CA. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 2017;28(2):113-9.
  • 27. Lee EJ, Kim TW, Lee DS, Kim H, Park YH, Kim J, et al. Increased CSF tau level is correlated with decreased lamina cribrosa thickness. Alzheimers Res Ther. 2016;8:6.
  • 28. Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2:e190.
  • 29. Wostyn P, Audenaert K, De Deyn PP. An abnormal high trans-lamina cribrosa pressure difference: a missing link between Alzheimer's disease and glaucoma? Clin Neurol Neurosurg. 2008;110(7):753-4.
  • 30. Eraslan M, Cerman E, Yildiz Balci S, Celiker H, Sahin O, Temel A, et al. The choroid and lamina cribrosa is affected in patients with Parkinson's disease: enhanced depth imaging optical coherence tomography study. Acta Ophthalmol. 2016;94(1):e68-75.

Şizofreni Hastalarında Gözün Arka Segment Yapılarının Değerlendirilmesi

- , 01.09.2019
https://doi.org/10.16919/bozoktip.566862

Öz

Amaç: Bu
çalışmada, şizofreni hastalığının gözün arka segment yapılarından retina sinir
lifi tabakası (RSLT), santral makülar kalınlık (SMK), koroidal kalınlık (KK) ve
lamina kribroza (LK) ölçümleri üzerine etkisinin değerlendirilmesi
amaçlanmıştır.



Gereç ve Yöntemler: Çalışmaya
toplamda şizofrenisi bulunan 35 hasta ve 35 sağlıklı katılımcı dahil
edilmiştir. Her hastanın yalnızca sağ gözü çalışılmıştır. Fourier domain optik
koherens tomografi (OKT) ile her kadrandan RSLT kalınlığı, KK, SMK, LK
kalınlığı ve LK derinliği (LKD) ölçümleri yapılmıştır ve her değer gruplar
arasında karşılaştırılmıştır.



Bulgular: Gruplar
arasında ortalama yaş ve cinsiyet dağılımları benzerdi (p=0.528 ve p=0.299). Ortalama, superior, inferior, nazal ve temporal RSLT
kalınlıkları şizofrenisi bulunan hastalarda, kontrollere göre anlamlı olarak
düşüktü (sırasıyla; p<0.001, p<0.001, p=0.001, p=0.002
ve p<0.001). Fovea altı ve çevresindeki ortalama KK
ölçümleri gruplar arasında anlamlı farklılık göstermiyordu (fovea altı; p=0.676, 1.5 mm nazal; p=0.632, 3 mm nazal; p=1.000, 1.5 mm temporal; p=0.811, 3 mm temporal; p=0.145). Ortalama SMK gruplar arasında
benzerdi (p=0.678). LK
kalınlığı ve LKD, gruplar arasında istatistiksel açıdan anlamlı farklılık
göstermiyordu (p=0.816 ve p=0.161).



Sonuçlar: Tüm
kadranlardaki RSLT kalınlıkları şizofreni hastalarında kontrol hastalarına göre
anlamlı şekilde düşüktü. Fakat SMK, fovea altı ve çevresi KK, LK kalınlığı ve
LKD ölçümlerinde gruplar arasında anlamlı fark yoktu. Bu bulgular şizofreni
hastalarında nöron kayıplarının görüntülenmesinde, RSLT kalınlığının
değerlendirildiği OKT’nin kullanılabileceğini gösterdi.

Anahtar kelimeler:
Şizofreni; retina sinir lifi tabakası; koroidal kalınlık; lamina kribroza
kalınlığı; makülar kalınlık

Kaynakça

  • 1. Nasrallah H, Tandon R, Keshavan M. Beyond the facts in schizophrenia: closing the gaps in diagnosis, pathophysiology, and treatment. Epidemiology and Psychiatric Sciences. 2011;20(4):317-27.
  • 2. Woods BT, Ward KE, Johnson EH. Meta-analysis of the time-course of brain volume reduction in schizophrenia: implications for pathogenesis and early treatment. Schizophr Res. 2005;73(2-3):221-8.
  • 3. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003;361(9354):281-8.
  • 4. Almarcegui C, Dolz I, Pueyo V, Garcia E, Fernandez FJ, Martin J, et al. Correlation between functional and structural assessments of the optic nerve and retina in multiple sclerosis patients. Neurophysiol Clin. 2010;40(3):129-35.
  • 5. Ong YT, Hilal S, Cheung CY, Venketasubramanian N, Niessen WJ, Vrooman H, et al. Retinal neurodegeneration on optical coherence tomography and cerebral atrophy. Neurosci Lett. 2015;584:12-6.
  • 6. Lalor EC, De Sanctis P, Krakowski MI, Foxe JJ. Visual sensory processing deficits in schizophrenia: is there anything to the magnocellular account? Schizophr Res. 2012;139(1-3):246-52.
  • 7. Yilmaz U, Kucuk E, Ulgen A, Ozkose A, Demircan S, Ulusoy DM, et al. Retinal nerve fiber layer and macular thickness measurement in patients with schizophrenia. Eur J Ophthalmol. 2016;26(4):375-8.
  • 8. Silverstein SM, Paterno D, Cherneski L, Green S. Optical coherence tomography indices of structural retinal pathology in schizophrenia. Psychol Med. 2018;48(12):2023-33.
  • 9. Kwun Y, Han JC, Kee C. Comparison of lamina cribrosa thickness in normal tension glaucoma patients with unilateral visual field defect. Am J Ophthalmol. 2015;159(3):512-8.e1.
  • 10. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013.
  • 11. Gonzalez-Garcia AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol. 2009;147(6):1067-74, 74.e1.
  • 12. Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology. 2010;117(4):738-46.
  • 13. Park H-YL, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119(1):10-20.
  • 14. Spaide RF, Koizumi H, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. American journal of ophthalmology. 2008;146(4):496-500.
  • 15. Yeap S, Kelly SP, Sehatpour P, Magno E, Garavan H, Thakore JH, et al. Visual sensory processing deficits in Schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosci. 2008;258(5):305-16.
  • 16. Bangalore SS, Goradia DD, Nutche J, Diwadkar VA, Prasad KM, Keshavan MS. Untreated illness duration correlates with gray matter loss in first-episode psychoses. Neuroreport. 2009;20(7):729-34.
  • 17. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res. 2009;108(1-3):3-10.
  • 18. Ascaso FJ, Laura C, Quintanilla MÁ, Gutiérrez Galve L, López-Antón R, Cristóbal JA, et al. Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: a short report. The European Journal of Psychiatry. 2010;24(4):227-35.
  • 19. Cabezon L, Ascaso F, Ramiro P, Quintanilla M, Gutierrez L, Lobo A, et al. Optical coherence tomography: a window into the brain of schizophrenic patients. Acta Ophthalmol (Copenh). 2012;90.
  • 20. Ascaso FJ, Rodriguez-Jimenez R, Cabezon L, Lopez-Anton R, Santabarbara J, De la Camara C, et al. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: Influence of recent illness episodes. Psychiatry Res. 2015;229(1-2):230-6.
  • 21. Lee WW, Tajunisah I, Sharmilla K, Peyman M, Subrayan V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7785-92.
  • 22. Chu EM, Kolappan M, Barnes TR, Joyce EM, Ron MA. A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res. 2012;203(1):89-94.
  • 23. Meier MH, Shalev I, Moffitt TE, Kapur S, Keefe RS, Wong TY, et al. Microvascular abnormality in schizophrenia as shown by retinal imaging. Am J Psychiatry. 2013;170(12):1451-9.
  • 24. Schonfeldt-Lecuona C, Kregel T, Schmidt A, Pinkhardt EH, Lauda F, Kassubek J, et al. From Imaging the Brain to Imaging the Retina: Optical Coherence Tomography (OCT) in Schizophrenia. Schizophr Bull. 2016;42(1):9-14.
  • 25. Joe P, Ahmad M, Riley G, Weissman J, Smith RT, Malaspina D. A pilot study assessing retinal pathology in psychosis using optical coherence tomography: Choroidal and macular thickness. Psychiatry Res. 2018;263:158-61.
  • 26. Downs JC, Girkin CA. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 2017;28(2):113-9.
  • 27. Lee EJ, Kim TW, Lee DS, Kim H, Park YH, Kim J, et al. Increased CSF tau level is correlated with decreased lamina cribrosa thickness. Alzheimers Res Ther. 2016;8:6.
  • 28. Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2:e190.
  • 29. Wostyn P, Audenaert K, De Deyn PP. An abnormal high trans-lamina cribrosa pressure difference: a missing link between Alzheimer's disease and glaucoma? Clin Neurol Neurosurg. 2008;110(7):753-4.
  • 30. Eraslan M, Cerman E, Yildiz Balci S, Celiker H, Sahin O, Temel A, et al. The choroid and lamina cribrosa is affected in patients with Parkinson's disease: enhanced depth imaging optical coherence tomography study. Acta Ophthalmol. 2016;94(1):e68-75.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Yazarlar

Bekir Küçük 0000-0002-4185-0656

Özgül Karaaslan 0000-0003-0829-5088

Yunus Hacımusalar Bu kişi benim 0000-0002-1777-2707

Seray Aslan Bayhan 0000-0001-8514-9450

Hasan Ali Bayhan 0000-0002-3364-6890

Yayımlanma Tarihi 1 Eylül 2019

Kaynak Göster

APA Küçük, B., Karaaslan, Ö., Hacımusalar, Y., Bayhan, S. A., vd. (t.y.). Evaluation of Posterior Ocular Structures in Patients with Schizophrenia. Bozok Tıp Dergisi. https://doi.org/10.16919/bozoktip.566862
AMA Küçük B, Karaaslan Ö, Hacımusalar Y, Bayhan SA, Bayhan HA. Evaluation of Posterior Ocular Structures in Patients with Schizophrenia. Bozok Tıp Dergisi. doi:10.16919/bozoktip.566862
Chicago Küçük, Bekir, Özgül Karaaslan, Yunus Hacımusalar, Seray Aslan Bayhan, ve Hasan Ali Bayhan. “Evaluation of Posterior Ocular Structures in Patients With Schizophrenia”. Bozok Tıp Dergisit.y. https://doi.org/10.16919/bozoktip.566862.
EndNote Küçük B, Karaaslan Ö, Hacımusalar Y, Bayhan SA, Bayhan HA Evaluation of Posterior Ocular Structures in Patients with Schizophrenia. Bozok Tıp Dergisi
IEEE B. Küçük, Ö. Karaaslan, Y. Hacımusalar, S. A. Bayhan, ve H. A. Bayhan, “Evaluation of Posterior Ocular Structures in Patients with Schizophrenia”, Bozok Tıp Dergisi, doi: 10.16919/bozoktip.566862.
ISNAD Küçük, Bekir vd. “Evaluation of Posterior Ocular Structures in Patients With Schizophrenia”. Bozok Tıp Dergisi. t.y. https://doi.org/10.16919/bozoktip.566862.
JAMA Küçük B, Karaaslan Ö, Hacımusalar Y, Bayhan SA, Bayhan HA. Evaluation of Posterior Ocular Structures in Patients with Schizophrenia. Bozok Tıp Dergisi. doi:10.16919/bozoktip.566862.
MLA Küçük, Bekir vd. “Evaluation of Posterior Ocular Structures in Patients With Schizophrenia”. Bozok Tıp Dergisi, doi:10.16919/bozoktip.566862.
Vancouver Küçük B, Karaaslan Ö, Hacımusalar Y, Bayhan SA, Bayhan HA. Evaluation of Posterior Ocular Structures in Patients with Schizophrenia. Bozok Tıp Dergisi.
Copyright © BOZOK Üniversitesi - Tıp Fakültesi