Araştırma Makalesi
BibTex RIS Kaynak Göster

Metamalzeme Tabanlı Mermer Sensör Tasarımı

Yıl 2018, Cilt: 6 Sayı: 1, 223 - 230, 31.01.2018

Öz

Bu çalışmada Agariya Brown,
Banswara Marble, Kesariyaji Green ve Pink Babarmal mermer taşlarına yönelik
olarak X bandında metamalzeme tabanlı sensör tasarımı gerçekleştirilmiştir.
Çalışma içerisinde verilen dört farklı mermer türünün dielektrik değerleri ve
kayıp tanjant değerleri incelenerek belirtilen frekans aralığına parametrik
atanan değerler sonucuna göre rezanatör tasarımı yapılmaktadır. Tasarımı
yapılan sensör ile birlikte mermer taşlarının yansıma değerleri nümerik olarak
elde edilebilmekte ve böylelikle mermer türünün belirlenmesi mümkün olmaktadır.
Böyle bir çalışma farklı frekans aralıkları için de yapılabileceği gibi farklı
materyaller için de geliştirilebilir konumdadır.

Kaynakça

  • [1] E Konakyeri, ‘’Metamalzeme kaplı iletken cisimden saçılan alanı en aza indiren parametrik değerlerin matematiksel bir yöntem ile hesaplanması,’’ Yüksek lisans tezi, Elektrik ve Elektronik Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, , İstanbul, Türkiye, 2010.
  • [2] V.G Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 517-526, 1968.
  • [3] R. A Shelby, D. R Smıth, S. C Nemat-Nasser and S Schultz, “Microwave transmission through a two-dimensional, ısotropic, left-handed metamaterial,’’ Applied Physics Letters, vol. 78, no. 4, pp. 489-491, 2001.
  • [4] J.B Pendry, A.J Holden, D.J Robbins and W.J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE RFID Virtual Journal, vol. 47, no. 11, pp. 2075-2084, 1999.
  • [5] X. Yang, J. Yin, G. Yu, L. Peng and N Wang, “Acoustic superlens using helmholtz-resonator-based metamaterials,” Applıed Physıcs Letters, vol. 107, no. 19, 193505, 2015.
  • [6] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977-980, 2006.
  • [7] O. Sıpahıoglu, S.A. Barrınger, “Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content” Journal Of Food Scıence, vol. 68, no. 1, pp. 234-239, 2003.
  • [8] D. Faktorová “Microwave characterization of frequency and temperature dependences of beef bone dielectric properties using waveguide measurement system” MEASUREMENT, Proceedings of the 7th International Conference, Smolenice, Slovakia, 2009.
  • [9] Qi-Y. Wen, Yun-S. Xie, Huai-W. Zhang, Qing-H. Yang, Yuan-X. Li and Ying-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Optics Express, vol. 17, no. 22, pp. 20256-20265, 2009.
  • [10] J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. S. Cumming “Polarization insensitive, broadband terahertz metamaterial absorber”, Optıcs Letters, vol. 36, no. 17, pp. 3476-3478, 2011.
  • [11] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization” Optıcs Express, vol. 16, no. 10, pp. 7181-7188, 2008.
  • [12] H. Hsu, M. J. Hill, R. W. Ziolkowski, J. Papapolymerou, “A duroid-based planar ebg cavity resonator filter with ımproved quality factor”, IEEE Antennas And Wıreless Propagatıon Letters, vol. 1, pp. 67-70, 2002.
  • [13] R. Aylo, P. P. Banerjee, A. K. Ghosh and P. Verma, “Design of metamaterial based sensors for pressure measurement,” Proc. of SPIE, vol. 7604, p. 760412, 2010.
  • [14] M. Karaaslan, E. Unal, O. Akgol and C. Sabah, “Flexible chiral metamaterials with dynamically optical activity and high negative refractive ındex,” Modern Physics Letters, vol. 29, no. 18, pp. 1550087-8, 2015.
  • [15] H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Applıed Physıcs Letters, vol. 97, no. 26, pp. 261909, 2010.
  • [16] Z. Ozer, A. M. Mamedov and E. Ozbay, “Metamaterial absorber based multifunctional sensor application,” IOP Conf. Series: Materials Science and Engineering, no. 175, pp. 012059, 2017.
  • [17] M. Yoo, H. Ki Kim, S. Lim, “Electromagnetic-based ethanol chemical sensor using metamaterial absorber,” Sensors and Actuators B: Chemical, no. 222, pp.173-180, 2016.
  • [18] S. RoyChoudhury, V. Rawat, A. H. Jalal, S.N. Kale, S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosensors and Bioelectronics, no. 86, pp. 595–608, 2016.
  • [19] A. Titt, P. Mai, R. Taubert, D. Dregely, N. Liu, H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and ıts application to hydrogen sensing” Nano Letter., vol. 11, pp. 4366–4369, 2011.
  • [20] P.C. Bapna and S. Joshi, “Measurement of dielectric properties of various decorative stones at x-band microwave frequencies,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, no. 7, pp. 180-186, 2014.
  • [21] Y. Öztürk, ‘’Düzlemsel metamalzemeler ve uygulamaları,’’ Doktora tezi, Elektrik ve Elektronik Mühendisliği, Ankara Üniversitesi, Ankara, Türkiye, 2014.
  • [22] T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using mems switches,” IEEE Antennas and Wıreless Propagatıon Letters, no. 6, pp. 401–404, 2007.
  • [23] D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong and Wu, B. I., “Active lefthanded material collaborated with microwave varactors,” Applied Physics Letters, vol. 91, no. 16, 164101, 2007.
  • [24] T. Hand and S. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” Journal of Applied Physics, vol. 103, no. 6, 066105, 2008.
  • [25] Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Applied Physics Letters, vol. 90, no. 1, 011112, 2007.
  • [26] E. Ekmekci, K. Topalli, T. Akin, and G.T. Sayan, “A tunable multi-band metamaterial design using micro-split srr structures,” Optics Express, vol. 17, no. 18, pp. 16046-16058, 2009.

Design of Metamaterial Based Marble Sensor

Yıl 2018, Cilt: 6 Sayı: 1, 223 - 230, 31.01.2018

Öz

In this study, metametarial based sensor design is carried out intended for Agariya Brown, Banswara Marble, Kaseriyaji Green and Pink Babarmal marble stones on X-band. In the study, design of resenator is made by examining dielectric and loss tangent values of four different types of marble according to values that is parametrically assigned to frequency range specified. With the designed sensor, the reflection values of marble stones can be numerically obtained and thus the marble type can be determined. Such a study can be done for different frequency range as well as for different meterials.

Kaynakça

  • [1] E Konakyeri, ‘’Metamalzeme kaplı iletken cisimden saçılan alanı en aza indiren parametrik değerlerin matematiksel bir yöntem ile hesaplanması,’’ Yüksek lisans tezi, Elektrik ve Elektronik Mühendisliği Bölümü, İstanbul Teknik Üniversitesi, , İstanbul, Türkiye, 2010.
  • [2] V.G Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 517-526, 1968.
  • [3] R. A Shelby, D. R Smıth, S. C Nemat-Nasser and S Schultz, “Microwave transmission through a two-dimensional, ısotropic, left-handed metamaterial,’’ Applied Physics Letters, vol. 78, no. 4, pp. 489-491, 2001.
  • [4] J.B Pendry, A.J Holden, D.J Robbins and W.J. Steward, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE RFID Virtual Journal, vol. 47, no. 11, pp. 2075-2084, 1999.
  • [5] X. Yang, J. Yin, G. Yu, L. Peng and N Wang, “Acoustic superlens using helmholtz-resonator-based metamaterials,” Applıed Physıcs Letters, vol. 107, no. 19, 193505, 2015.
  • [6] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977-980, 2006.
  • [7] O. Sıpahıoglu, S.A. Barrınger, “Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content” Journal Of Food Scıence, vol. 68, no. 1, pp. 234-239, 2003.
  • [8] D. Faktorová “Microwave characterization of frequency and temperature dependences of beef bone dielectric properties using waveguide measurement system” MEASUREMENT, Proceedings of the 7th International Conference, Smolenice, Slovakia, 2009.
  • [9] Qi-Y. Wen, Yun-S. Xie, Huai-W. Zhang, Qing-H. Yang, Yuan-X. Li and Ying-L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Optics Express, vol. 17, no. 22, pp. 20256-20265, 2009.
  • [10] J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. S. Cumming “Polarization insensitive, broadband terahertz metamaterial absorber”, Optıcs Letters, vol. 36, no. 17, pp. 3476-3478, 2011.
  • [11] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization” Optıcs Express, vol. 16, no. 10, pp. 7181-7188, 2008.
  • [12] H. Hsu, M. J. Hill, R. W. Ziolkowski, J. Papapolymerou, “A duroid-based planar ebg cavity resonator filter with ımproved quality factor”, IEEE Antennas And Wıreless Propagatıon Letters, vol. 1, pp. 67-70, 2002.
  • [13] R. Aylo, P. P. Banerjee, A. K. Ghosh and P. Verma, “Design of metamaterial based sensors for pressure measurement,” Proc. of SPIE, vol. 7604, p. 760412, 2010.
  • [14] M. Karaaslan, E. Unal, O. Akgol and C. Sabah, “Flexible chiral metamaterials with dynamically optical activity and high negative refractive ındex,” Modern Physics Letters, vol. 29, no. 18, pp. 1550087-8, 2015.
  • [15] H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Applıed Physıcs Letters, vol. 97, no. 26, pp. 261909, 2010.
  • [16] Z. Ozer, A. M. Mamedov and E. Ozbay, “Metamaterial absorber based multifunctional sensor application,” IOP Conf. Series: Materials Science and Engineering, no. 175, pp. 012059, 2017.
  • [17] M. Yoo, H. Ki Kim, S. Lim, “Electromagnetic-based ethanol chemical sensor using metamaterial absorber,” Sensors and Actuators B: Chemical, no. 222, pp.173-180, 2016.
  • [18] S. RoyChoudhury, V. Rawat, A. H. Jalal, S.N. Kale, S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosensors and Bioelectronics, no. 86, pp. 595–608, 2016.
  • [19] A. Titt, P. Mai, R. Taubert, D. Dregely, N. Liu, H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and ıts application to hydrogen sensing” Nano Letter., vol. 11, pp. 4366–4369, 2011.
  • [20] P.C. Bapna and S. Joshi, “Measurement of dielectric properties of various decorative stones at x-band microwave frequencies,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, no. 7, pp. 180-186, 2014.
  • [21] Y. Öztürk, ‘’Düzlemsel metamalzemeler ve uygulamaları,’’ Doktora tezi, Elektrik ve Elektronik Mühendisliği, Ankara Üniversitesi, Ankara, Türkiye, 2014.
  • [22] T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using mems switches,” IEEE Antennas and Wıreless Propagatıon Letters, no. 6, pp. 401–404, 2007.
  • [23] D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong and Wu, B. I., “Active lefthanded material collaborated with microwave varactors,” Applied Physics Letters, vol. 91, no. 16, 164101, 2007.
  • [24] T. Hand and S. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” Journal of Applied Physics, vol. 103, no. 6, 066105, 2008.
  • [25] Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Applied Physics Letters, vol. 90, no. 1, 011112, 2007.
  • [26] E. Ekmekci, K. Topalli, T. Akin, and G.T. Sayan, “A tunable multi-band metamaterial design using micro-split srr structures,” Optics Express, vol. 17, no. 18, pp. 16046-16058, 2009.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Çıngı

Yayımlanma Tarihi 31 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Çıngı, A. (2018). Metamalzeme Tabanlı Mermer Sensör Tasarımı. Duzce University Journal of Science and Technology, 6(1), 223-230.
AMA Çıngı A. Metamalzeme Tabanlı Mermer Sensör Tasarımı. DÜBİTED. Ocak 2018;6(1):223-230.
Chicago Çıngı, Ali. “Metamalzeme Tabanlı Mermer Sensör Tasarımı”. Duzce University Journal of Science and Technology 6, sy. 1 (Ocak 2018): 223-30.
EndNote Çıngı A (01 Ocak 2018) Metamalzeme Tabanlı Mermer Sensör Tasarımı. Duzce University Journal of Science and Technology 6 1 223–230.
IEEE A. Çıngı, “Metamalzeme Tabanlı Mermer Sensör Tasarımı”, DÜBİTED, c. 6, sy. 1, ss. 223–230, 2018.
ISNAD Çıngı, Ali. “Metamalzeme Tabanlı Mermer Sensör Tasarımı”. Duzce University Journal of Science and Technology 6/1 (Ocak 2018), 223-230.
JAMA Çıngı A. Metamalzeme Tabanlı Mermer Sensör Tasarımı. DÜBİTED. 2018;6:223–230.
MLA Çıngı, Ali. “Metamalzeme Tabanlı Mermer Sensör Tasarımı”. Duzce University Journal of Science and Technology, c. 6, sy. 1, 2018, ss. 223-30.
Vancouver Çıngı A. Metamalzeme Tabanlı Mermer Sensör Tasarımı. DÜBİTED. 2018;6(1):223-30.