Araştırma Makalesi
BibTex RIS Kaynak Göster

Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi

Yıl 2018, Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017), 553 - 564, 10.04.2018

Öz

Bu çalışmada, özellikle otomotiv endüstrisinde yaygın olarak
kullanılan AISI 4140 (42CrMo4) çeliğinin mekanik özellikleri üzerinde farklı
bekletme süreli derin kriyojenik işlemin etkisi incelenmiştir. Bu amaçla
hazırlanan AISI 4140 çeliğinden imal edilen numunelere geleneksel ısıl işlem
uygulanmış ve geleneksel ısıl işlemi tamamlayıcı bir işlem olan derin
kriyojenik işlem farklı bekletme sürelerinde (12, 24, 36 ve 48 saat)  - 140 °C sıcaklıkta uygulanmıştır. Derin
kriyojenik işlem sonrasında numunelere 200 °C’ de temperleme işlemi
uygulanmıştır. AISI 4140 çeliğin mekanik özelliklerinin belirlenebilmesi için
sertlik ölçüm ve çekme testleri gerçekleştirilmiştir. Bu testlerden elde edilen
bulgular analiz edilmiş ve karşılaştırılmıştır. Sonuçlar, farklı bekletme
süreli derin kriyojenik işlemin ve derin kriyojenik işlem sonrası uygulanan
temperleme işleminin AISI 4140 çeliğin mekanik özellikleri üzerinde önemli
etkileri olduğunu göstermiştir. Derin kriyojenik işlemli numunelerde önemli
sertlik artışları ve çekme dayanımlarında kayda değer iyileşmeler olmuştur.
Ayrıca, mekanik özelliklere etkisi yönünden derin kriyojenik işlemin en uygun
bekletme süresinin 36 saat olduğu tespit edilmiştir.

Kaynakça

  • [1] M. Kam, “Kriyojenik işlem görmüş millerin dinamik davranışlarının deneysel analizi,” Doktora tezi, Makine Mühendisliği Anabilimdalı, Düzce Üniversitesi, Düzce, Türkiye, 2016.
  • [2] Kam, M. H. Saruhan ve F. Kara. "Isıl işlem görmüş millerin dinamik davranışlarının deneysel analizi." İleri Teknoloji Bilimleri Dergisi, c. 5, s.1, ss. 80-90, 2016.
  • [3] M. Kam, H. Saruhan ve T. Guney, “Kriyojenik işlem ve sıcak dövme işlemi uygulanmış millerin deneysel titreşim analizi,” İleri Teknoloji Bilimleri Dergisi, c. 5, s. 3, ss. 21-30, 2016.
  • [4] M. Kam ve H. Saruhan, “Kriyojenik işlem görmüş millerin titreşim analizi,” 1. Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Konferansı, Afyon, 2016, ss. 1207-1213. [5] B. Pekgöz, S. Sarıdemir, İ. Uygur ve Y. Aslan, “Sementasyon işleminin farklı çeliklerin mikroyapı ve sertlik değerlerine etkileri,” Makine Teknolojileri Elektronik Dergisi, c. 10, s. 1, ss. 19-24, 2013.
  • [6] G. Höke, Şahin, İ. Ç. Henifi ve T. Fındık, “Kriyojenik işlemin SAE 4140 çeliğin mekanik özellikleri üzerine etkisi,” Teknik-Online Dergi, c. 13, s. 2, ss. 25-37, 2014.
  • [7] F. Kara, “AISI 52100 çeliğinin yorulma ömrü ve taşlanabilirliğine kriyojenik işlem parametrelerinin etkilerinin araştırılması,” Doktora tezi, Karabük Üniversitesi, Karabük, Türkiye, 2014.
  • [8] F. Kara, A. Çiçek and H. Demir, “Multiple Regression and ANN Models for Surface Quality of Cryogenically-Treated AISI 52100 Bearing Steel,” J. Balkan Tribol. Assoc., Vol. 19. No. 4, pp. 570-584, 2013.
  • [9] D.Senthilkumar, I. Rajendran, “Optimization of deep cryogenic treatment to reduce wear loss of 4140 steel,” Mater. Manuf. Process., Vol. 27, No.5, pp. 567-572, 2012. [10] D. Senthilkumar, I. Rajendran, M. Pellizzari and J. Siiriainen, “Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel,” J. Mater. Process. Technol., Vol. 211, No. 3, pp. 96-401, 2011.
  • [11] D. Mohan Lal, S. Renganarayanan and A. Kalanidhi, “Cryogenic treatment to augment wear resistance of tool and die steels,” Cryogenics, Vol. 41, No. 3, pp. 149-155, 2001.
  • [12] S. Zhirafar, A. Rezaeian, and M. Pugh, “Effect of cryogenic treatment on the mechanical properties of 4340 steel,” Journal of Materials Processing Technology, Vol. 186, No. 1, pp. 298-303, 2007.
  • [13] P. Baldissera, and C. Delprete,. “Deep cryogenic treatment: a bibliographic review” The Open Mechanical Engineering Journal, Vol. 2, pp. 1-11, 2008.
  • [14] M. Koneshlou, K. Meshinchi and F. Khomamizadeh, “Effect of cryogenic treatment on microstructure mechanical and wear behaviors of AISI H13 hot work tool steel” Cryogenics, Vol. 51, No. 1, pp. 55-61, 2011.
  • [15] S. S. Dixit, S. R. Nimbalkar and R. R. Kharde, “Dry sliding wear analysis of D5 tool steel at different heat treatments,” Int. J. Eng. Sci., Vol. 2, No.5, pp. 16-26, 2013.
  • [16] B. Podgornik, F. Majdic, V. Leskovsek and J. Vizinti, “Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding,” Wear, Vol. 288, pp. 88-93, 2012.
  • [17] I. Gunes, A. Cicek, K. Aslantas and F. Kara “Effect of deep cryogenic treatment on wear resistance of AISI 52100 bearing steel,” Transactions of the Indian Institute of Metals, Vol. 67, No. 6, pp. 909-917, 2014.
  • [18] D. Senthilkumar, “Effect of deep cryogenic treatment on residual stress and mechanical behaviour of induction hardened En 8 steel,” Advances in Materials and Processing Technologies, Vol. 1, pp. 10, 2016.
  • [19] A. Zare, H. Mansouri and S. R. Hosseini, “Influence of the holding time of the deep cryogenic treatment on the strain hardening behavior of HY-TUF steel,” International Journal of Mechanical and Materials Engineering, Vol. 10, No. 1, pp. 1-9, 2015.
  • [20] S. Li, X. Yuan, W. Jiang, H. Sun, J. Li, K. Zhao and M. Yang, “Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel,” Materials Science and Engineering: A, vol. 605, pp. 229-235, 2014.
  • [21] A. Idayan, A. Gnanavelbabu and K. Rajkumar, “Influence of deep cryogenic treatment on the mechanical properties of AISI 440C bearing steel,” Procedia Engineering, Vol. 97, pp. 1683-1691, 2014.
  • [22] N. W. Khun, E. Liu, A. W. Y. Tan, D. Senthilkumar, B. Albert and D. M. Lal, “Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool steel,” Friction, Vol. 3, No. 3, pp. 234-242, 2015.
  • [23] H. Li, W. Tong, J. Cui, H. Zhang, L. Chen and L. Zuo, “The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel,” Materials Science and Engineering: A, Vol. 662, pp. 356-362, 2016.
  • [24] K. Amini, A. Akhbarizadeh and S. Javadpour, “Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91,” Materials and Design, Vol. 54, pp. 154-160, 2014.
  • [25] D. Das, A. K. Dutta, K. K. Ray, “Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel,” Cryogenics, Vol. 49, pp. 176- 184, 2009.
  • [26] K. Amini, A. Akhbarizadeh and S. Javadpour, “Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment,” Vac., Vol. 86, pp. 1534-1540, 2012.
  • [27] D. Das, A. K. Dutta and K. K. Ray “Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness,” Mater. Sci. Eng. A, Vol. 527, pp. 2182-2193, 2010.
  • [28] N. Altan Özbek, A. Çiçek, M. Gülesin, and O. Özbek, “Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear,” International Journal of Machine Tools and Manufacture, Vol. 86, pp. 34-43, 2014.
  • [29] A. Akhbarizadeh and S. Javadpour, “Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment,” Mater. Lett., Vol. 93, pp. 247-250, 2013.
  • [30] K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou and Z. Li, “Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy,” Mater. Sci. Eng. A, Vol. 584, pp. 170-176, 2013.
  • [31] A. Bensely, A. Prabhakaran, D. Mohan Lal and G. Nagarajan, “Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment,” Cryogenics, Vol. 45, pp. 747-754, 2006.
  • [32] C. X. Xiong, X. M. Zhang, Y. L. Deng, Y. Xiao, Z. Z. Deng and B. X. Chen, “Effects of cryogenic treatment on mechanical properties of extruded Mg–Gd–Y–Zr (Mn) alloys,” J. Central South Univ. Technol., Vol. 14, pp. 305-309, 2007.
  • [33] P. Baldissera and C. Delprete, “Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel,” Materials and Design, Vol. 30, pp. 1435-1440, 2009.

The Effect of Deep Cryogenic Treatment with Different Holding Times on the Mechanical Properties of AISI 4140 (42CrMo4) Steel

Yıl 2018, Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017), 553 - 564, 10.04.2018

Öz

In this study, the effect of Deep Cryogenic Treatment with different holding times on the mechanical properties of AISI 4140 steel was investigated. For this purpose; AISI 4140 steel samples were subjected to quenched treatment, deep cryogenic treatment and deep cryogenic treatment - tempering. The samples were cooled down from room temperature to -140 °C and holded for different holding times (12, 24, 36 and 48 hours) for the deep cryogenic treatment. The tensile and hardness tests were performed to investigate the effect on the mechanical properties of the AISI 4140 steel. The results showed that different holding times of Deep Cryogenic Treatment have significant effect on the mechanical properties of AISI 4140 steel. Deep Cryogenic Treatment was shown to have a positive effect on the hardness. It was also found that the optimum holding time of the deep cryogenic treatment was 36 hours. The results showed that tensile strength was found to improve about 10 % and hardness value about 5 %.

Kaynakça

  • [1] M. Kam, “Kriyojenik işlem görmüş millerin dinamik davranışlarının deneysel analizi,” Doktora tezi, Makine Mühendisliği Anabilimdalı, Düzce Üniversitesi, Düzce, Türkiye, 2016.
  • [2] Kam, M. H. Saruhan ve F. Kara. "Isıl işlem görmüş millerin dinamik davranışlarının deneysel analizi." İleri Teknoloji Bilimleri Dergisi, c. 5, s.1, ss. 80-90, 2016.
  • [3] M. Kam, H. Saruhan ve T. Guney, “Kriyojenik işlem ve sıcak dövme işlemi uygulanmış millerin deneysel titreşim analizi,” İleri Teknoloji Bilimleri Dergisi, c. 5, s. 3, ss. 21-30, 2016.
  • [4] M. Kam ve H. Saruhan, “Kriyojenik işlem görmüş millerin titreşim analizi,” 1. Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Konferansı, Afyon, 2016, ss. 1207-1213. [5] B. Pekgöz, S. Sarıdemir, İ. Uygur ve Y. Aslan, “Sementasyon işleminin farklı çeliklerin mikroyapı ve sertlik değerlerine etkileri,” Makine Teknolojileri Elektronik Dergisi, c. 10, s. 1, ss. 19-24, 2013.
  • [6] G. Höke, Şahin, İ. Ç. Henifi ve T. Fındık, “Kriyojenik işlemin SAE 4140 çeliğin mekanik özellikleri üzerine etkisi,” Teknik-Online Dergi, c. 13, s. 2, ss. 25-37, 2014.
  • [7] F. Kara, “AISI 52100 çeliğinin yorulma ömrü ve taşlanabilirliğine kriyojenik işlem parametrelerinin etkilerinin araştırılması,” Doktora tezi, Karabük Üniversitesi, Karabük, Türkiye, 2014.
  • [8] F. Kara, A. Çiçek and H. Demir, “Multiple Regression and ANN Models for Surface Quality of Cryogenically-Treated AISI 52100 Bearing Steel,” J. Balkan Tribol. Assoc., Vol. 19. No. 4, pp. 570-584, 2013.
  • [9] D.Senthilkumar, I. Rajendran, “Optimization of deep cryogenic treatment to reduce wear loss of 4140 steel,” Mater. Manuf. Process., Vol. 27, No.5, pp. 567-572, 2012. [10] D. Senthilkumar, I. Rajendran, M. Pellizzari and J. Siiriainen, “Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel,” J. Mater. Process. Technol., Vol. 211, No. 3, pp. 96-401, 2011.
  • [11] D. Mohan Lal, S. Renganarayanan and A. Kalanidhi, “Cryogenic treatment to augment wear resistance of tool and die steels,” Cryogenics, Vol. 41, No. 3, pp. 149-155, 2001.
  • [12] S. Zhirafar, A. Rezaeian, and M. Pugh, “Effect of cryogenic treatment on the mechanical properties of 4340 steel,” Journal of Materials Processing Technology, Vol. 186, No. 1, pp. 298-303, 2007.
  • [13] P. Baldissera, and C. Delprete,. “Deep cryogenic treatment: a bibliographic review” The Open Mechanical Engineering Journal, Vol. 2, pp. 1-11, 2008.
  • [14] M. Koneshlou, K. Meshinchi and F. Khomamizadeh, “Effect of cryogenic treatment on microstructure mechanical and wear behaviors of AISI H13 hot work tool steel” Cryogenics, Vol. 51, No. 1, pp. 55-61, 2011.
  • [15] S. S. Dixit, S. R. Nimbalkar and R. R. Kharde, “Dry sliding wear analysis of D5 tool steel at different heat treatments,” Int. J. Eng. Sci., Vol. 2, No.5, pp. 16-26, 2013.
  • [16] B. Podgornik, F. Majdic, V. Leskovsek and J. Vizinti, “Improving tribological properties of tool steels through combination of deep-cryogenic treatment and plasma nitriding,” Wear, Vol. 288, pp. 88-93, 2012.
  • [17] I. Gunes, A. Cicek, K. Aslantas and F. Kara “Effect of deep cryogenic treatment on wear resistance of AISI 52100 bearing steel,” Transactions of the Indian Institute of Metals, Vol. 67, No. 6, pp. 909-917, 2014.
  • [18] D. Senthilkumar, “Effect of deep cryogenic treatment on residual stress and mechanical behaviour of induction hardened En 8 steel,” Advances in Materials and Processing Technologies, Vol. 1, pp. 10, 2016.
  • [19] A. Zare, H. Mansouri and S. R. Hosseini, “Influence of the holding time of the deep cryogenic treatment on the strain hardening behavior of HY-TUF steel,” International Journal of Mechanical and Materials Engineering, Vol. 10, No. 1, pp. 1-9, 2015.
  • [20] S. Li, X. Yuan, W. Jiang, H. Sun, J. Li, K. Zhao and M. Yang, “Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel,” Materials Science and Engineering: A, vol. 605, pp. 229-235, 2014.
  • [21] A. Idayan, A. Gnanavelbabu and K. Rajkumar, “Influence of deep cryogenic treatment on the mechanical properties of AISI 440C bearing steel,” Procedia Engineering, Vol. 97, pp. 1683-1691, 2014.
  • [22] N. W. Khun, E. Liu, A. W. Y. Tan, D. Senthilkumar, B. Albert and D. M. Lal, “Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool steel,” Friction, Vol. 3, No. 3, pp. 234-242, 2015.
  • [23] H. Li, W. Tong, J. Cui, H. Zhang, L. Chen and L. Zuo, “The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel,” Materials Science and Engineering: A, Vol. 662, pp. 356-362, 2016.
  • [24] K. Amini, A. Akhbarizadeh and S. Javadpour, “Investigating the effect of quench environment and deep cryogenic treatment on the wear behavior of AZ91,” Materials and Design, Vol. 54, pp. 154-160, 2014.
  • [25] D. Das, A. K. Dutta, K. K. Ray, “Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel,” Cryogenics, Vol. 49, pp. 176- 184, 2009.
  • [26] K. Amini, A. Akhbarizadeh and S. Javadpour, “Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic heat treatment,” Vac., Vol. 86, pp. 1534-1540, 2012.
  • [27] D. Das, A. K. Dutta and K. K. Ray “Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness,” Mater. Sci. Eng. A, Vol. 527, pp. 2182-2193, 2010.
  • [28] N. Altan Özbek, A. Çiçek, M. Gülesin, and O. Özbek, “Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear,” International Journal of Machine Tools and Manufacture, Vol. 86, pp. 34-43, 2014.
  • [29] A. Akhbarizadeh and S. Javadpour, “Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment,” Mater. Lett., Vol. 93, pp. 247-250, 2013.
  • [30] K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou and Z. Li, “Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy,” Mater. Sci. Eng. A, Vol. 584, pp. 170-176, 2013.
  • [31] A. Bensely, A. Prabhakaran, D. Mohan Lal and G. Nagarajan, “Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment,” Cryogenics, Vol. 45, pp. 747-754, 2006.
  • [32] C. X. Xiong, X. M. Zhang, Y. L. Deng, Y. Xiao, Z. Z. Deng and B. X. Chen, “Effects of cryogenic treatment on mechanical properties of extruded Mg–Gd–Y–Zr (Mn) alloys,” J. Central South Univ. Technol., Vol. 14, pp. 305-309, 2007.
  • [33] P. Baldissera and C. Delprete, “Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel,” Materials and Design, Vol. 30, pp. 1435-1440, 2009.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Menderes Kam

Hamit Saruhan

Yayımlanma Tarihi 10 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017)

Kaynak Göster

APA Kam, M., & Saruhan, H. (2018). Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi. Duzce University Journal of Science and Technology, 6(3), 553-564.
AMA Kam M, Saruhan H. Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi. DÜBİTED. Nisan 2018;6(3):553-564.
Chicago Kam, Menderes, ve Hamit Saruhan. “Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi”. Duzce University Journal of Science and Technology 6, sy. 3 (Nisan 2018): 553-64.
EndNote Kam M, Saruhan H (01 Nisan 2018) Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi. Duzce University Journal of Science and Technology 6 3 553–564.
IEEE M. Kam ve H. Saruhan, “Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi”, DÜBİTED, c. 6, sy. 3, ss. 553–564, 2018.
ISNAD Kam, Menderes - Saruhan, Hamit. “Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi”. Duzce University Journal of Science and Technology 6/3 (Nisan 2018), 553-564.
JAMA Kam M, Saruhan H. Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi. DÜBİTED. 2018;6:553–564.
MLA Kam, Menderes ve Hamit Saruhan. “Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi”. Duzce University Journal of Science and Technology, c. 6, sy. 3, 2018, ss. 553-64.
Vancouver Kam M, Saruhan H. Derin Kriyojenik İşlemin Farklı Bekletme Sürelerinin AISI 4140 (42CrMo4) Çeliğin Mekanik Özelliklerine Etkisi. DÜBİTED. 2018;6(3):553-64.