Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 1, 49 - 66, 01.07.2018

Abstract

Özet

Spektral kümeleme hem normalize hem de normalize edilmemiş yöntemler için geliştirilmiştir. Bununla birlikte,

iki yöntem arasında seçim yapmak henüz GUI’de (Grafik Kullanıcı Arayüzü) kurulmamıştır. Bu yazıda, GUI-MATLAB

kullanarak farklı kümeleme algoritmaları uyguluyoruz, daha sonra bu üç yöntemle kümeleme, benzer verikümeleri çiftleri için karşılaştırılıyor. Modelimiz, spektral, hiyerarşik ve yoğunluk temelli yöntemler gibi üç farklı kümeleme

yöntemini kullanmaktadır, daha sonra kümeleme için farklı geometrik, çok aralıklı ve çok düzeyli benzer

veri kümeleri grafikler kullanmaktadır. Sonuç olarak, yukarıdaki üç kümeleme algoritması, (geometrik, çok menzilli

ve çok seviyeli) farklı ortamlar için denenmiştir. Benzetim sonucu, bu çift geometrik veri kümelerinin kümelenmesini

göstermektedir: Eş merkezli daireler, yarı daireler ve toplama. Buna göre, spektral algoritma, veri kümeleri

arasında 2000’den fazla çift nokta ve 500’den fazla veri kümesindeki üstün kümeleme özelliklerine sahiptir.

References

  • S. Sharma, “Applied Multivariate Techniques,” John Willey Sons, 1996.
  • [H. Tatlıdil, “Uygulamalı çok değişkenli istatistiksel analiz,” Akad. Yayınları, 1996.
  • Q. Li, Y. Ren, L. Li, and W. Liu, “Fuzzy based af fi nity learning for spectral clustering,” Pattern Recognit., vol. 60, pp. 531–542, 2016.
  • I. B. Society, “A General Coefficient of Similarity and Some of Its Properties Author ( s ): J . C . Gower Published by : International Biometric Society Stable URL : http://www.jstor.org/stable/2528823 International Biometric Society is collaborating with JSTOR to digitize , preserve and extend,” vol. 27, no. 4, pp. 857–871, 2018.
  • F. H. C. Guttiérrez Toscano, P.,& Marriott, “Unsupervised classification of chemical compounds. Journal of the Royal Statistical Society,” Ser. C (Applied Stat., vol. 48, no. 2, pp. 153–163, 1999.
  • C. Hair Jr, J. F., Anderson, R. E., Tatham, R. L., & William, “Multivariate data analysis with readings.,” New Jersy Prentice Hall., 1995.
  • M. R. Anderberg, “Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks.,” Acad. Press, vol. 19, 2014.
  • M. S. Blashfield, R. K.,& Aldenderfer, “The literature on cluster analysis. Multivariate Behavioral Research,” vol. 13, no. 3, pp. 271–295, 1978.
  • S. H. Spielmat, D. A.,& Teng, “Spectral partitioning works: Planar graphs and finite element meshes.,” Found. Comput. Sci. Proceedings., 37th Annu. Symp. IEEE., pp. 96–105, 1996.
  • M. Everitt, B. S., Landau, S., & Leese, “Clustering analysis,” Arnold, London, 2001.
  • M. Han, J., Pei, J., & Kamber, Data mining: concepts and techniques. Elsevier, 2011.
  • A. Ş. Çelik, M., Dadaşer-Çelik, F., & Dokuz, “Anomaly detection in temperature data using dbscan algorithm.,” Innov. Intell. Syst. Appl. (INISTA), 2011 Int. Symp. IEEE, pp. 91–95.
  • M. Ester, H. Kriegel, X. Xu, and D.- Miinchen, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” 1996.
  • H. (Eds. ). Ho, T. B., Cheung, D., & Liu, “Advances in Knowledge Discovery and Data Mining,” in 9th Pacific- Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20, 2005, Proceedings(Vol. 3518). Springer., 2005.
  • G. Yazgan, E.,& KAYAALP, “Kümeleme (Cluster) Analizi Yöntemlerinin Karşılaştırmalı Olarak İncelenmesi ve Tarımsal Araştırmalarda Kullanılması.,” Zootekni Anabilim Dalı, Adana., 2002.
  • R. Atkinson, Q., Nicholls, G., Welch, D., & Gray, “From words to dates: water into wine, mathemagic or phylogenetic inference?,” Trans. Philol. Soc., vol. 103, no. 2, pp. 193–219, 2005.
  • A. Kannan, R., Vempala, S., & Vetta, “On clusterings: Good, bad and spectral,” J. ACM (JACM), 51(3), 497- 515., 2004.
  • F. H. C. Marriott, “Practical Problems in a Method of Cluster Analysis,” Biometrics, vol. 27, no. 3, pp. 501– 514, 1971.
  • https://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering

Implementation of Different Clustering Algorithms/Farklı Sınıflandırma Algoritmalarının Uygulamaları

Year 2018, Volume: 2 Issue: 1, 49 - 66, 01.07.2018

Abstract

Abstract

Spectral clustering is developed for both normalized and unnormalized methods. However, selecting between the

two methods is not established in the GUI (Graphical User Interface) yet . In this paper , we implement different

clustering algorithms using GUI-MATLAB, then, the clustering by these three methods, is compared for similar pairs

of datasets. Our model is employing such three different clustering methods which are spectral, hierarchical

and density based methods, then employing different geometrical, multi-range, and multi-level similar datasets

pairs of graph for clustering. As result, the above three clustering algorithms are experimented for different environments

which are (geometrical, multi-range and multi-level). The simulation result shows the clustering of

these pairs of geometrical datasets which are: Concentric circles, Semi-circles, and Aggregation. Accordingly, the

spectral algorithm has superior clustering in case of big datasets more than 2000 pairs points and range more

than 500 levels among datasets

References

  • S. Sharma, “Applied Multivariate Techniques,” John Willey Sons, 1996.
  • [H. Tatlıdil, “Uygulamalı çok değişkenli istatistiksel analiz,” Akad. Yayınları, 1996.
  • Q. Li, Y. Ren, L. Li, and W. Liu, “Fuzzy based af fi nity learning for spectral clustering,” Pattern Recognit., vol. 60, pp. 531–542, 2016.
  • I. B. Society, “A General Coefficient of Similarity and Some of Its Properties Author ( s ): J . C . Gower Published by : International Biometric Society Stable URL : http://www.jstor.org/stable/2528823 International Biometric Society is collaborating with JSTOR to digitize , preserve and extend,” vol. 27, no. 4, pp. 857–871, 2018.
  • F. H. C. Guttiérrez Toscano, P.,& Marriott, “Unsupervised classification of chemical compounds. Journal of the Royal Statistical Society,” Ser. C (Applied Stat., vol. 48, no. 2, pp. 153–163, 1999.
  • C. Hair Jr, J. F., Anderson, R. E., Tatham, R. L., & William, “Multivariate data analysis with readings.,” New Jersy Prentice Hall., 1995.
  • M. R. Anderberg, “Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks.,” Acad. Press, vol. 19, 2014.
  • M. S. Blashfield, R. K.,& Aldenderfer, “The literature on cluster analysis. Multivariate Behavioral Research,” vol. 13, no. 3, pp. 271–295, 1978.
  • S. H. Spielmat, D. A.,& Teng, “Spectral partitioning works: Planar graphs and finite element meshes.,” Found. Comput. Sci. Proceedings., 37th Annu. Symp. IEEE., pp. 96–105, 1996.
  • M. Everitt, B. S., Landau, S., & Leese, “Clustering analysis,” Arnold, London, 2001.
  • M. Han, J., Pei, J., & Kamber, Data mining: concepts and techniques. Elsevier, 2011.
  • A. Ş. Çelik, M., Dadaşer-Çelik, F., & Dokuz, “Anomaly detection in temperature data using dbscan algorithm.,” Innov. Intell. Syst. Appl. (INISTA), 2011 Int. Symp. IEEE, pp. 91–95.
  • M. Ester, H. Kriegel, X. Xu, and D.- Miinchen, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” 1996.
  • H. (Eds. ). Ho, T. B., Cheung, D., & Liu, “Advances in Knowledge Discovery and Data Mining,” in 9th Pacific- Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20, 2005, Proceedings(Vol. 3518). Springer., 2005.
  • G. Yazgan, E.,& KAYAALP, “Kümeleme (Cluster) Analizi Yöntemlerinin Karşılaştırmalı Olarak İncelenmesi ve Tarımsal Araştırmalarda Kullanılması.,” Zootekni Anabilim Dalı, Adana., 2002.
  • R. Atkinson, Q., Nicholls, G., Welch, D., & Gray, “From words to dates: water into wine, mathemagic or phylogenetic inference?,” Trans. Philol. Soc., vol. 103, no. 2, pp. 193–219, 2005.
  • A. Kannan, R., Vempala, S., & Vetta, “On clusterings: Good, bad and spectral,” J. ACM (JACM), 51(3), 497- 515., 2004.
  • F. H. C. Marriott, “Practical Problems in a Method of Cluster Analysis,” Biometrics, vol. 27, no. 3, pp. 501– 514, 1971.
  • https://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-spectral-clustering
There are 19 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Amna Mohamed M. Aburas This is me

Wamidh Mazher This is me

Osman Nuri Uçan

Oğuz Bayat This is me

Publication Date July 1, 2018
Submission Date June 30, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Aburas, A. M. M., Mazher, W., Uçan, O. N., Bayat, O. (2018). Implementation of Different Clustering Algorithms/Farklı Sınıflandırma Algoritmalarının Uygulamaları. AURUM Journal of Engineering Systems and Architecture, 2(1), 49-66.