Research Article
BibTex RIS Cite

Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream

Year 2023, Volume: 21 Issue: 4, 312 - 322, 31.12.2023
https://doi.org/10.24323/akademik-gida.1422109

Abstract

The carnation flowers (Dianthus caryophyllus L.) with broken stems or overgrown buds remain in the greenhouse and are discarded after all cutting operations are completed. Waste flowers are also separated while bouquets are being prepared. Therefore, this study aimed to utilize these fresh waste flowers in the production of natural food colorants. Anthocyanin extract was obtained from waste carnation flowers and turned into powder products via freeze- and spray-drying. Various properties of the powders were analyzed and statistically compared. Since degradation parameters of anthocyanins should be taken into consideration during the planning of the materials to which anthocyanin-based colorant will be added, the kinetic parameters of carnation anthocyanins were calculated at different pH (2.6, 4.0, and 6.0) and temperature (70, 80, and 90°C) values. Except for the liquid extract, the activation energies of all samples sharply decreased when the pH changed from 2.6 to 6.0. The most and least susceptible samples to the temperature elevation were freeze-dried samples at pH 2.6 and spray-dried samples at pH 6.0, respectively. Across all the data, the activation energies of the liquid extract sample at pH 2.6 and pH 4.0 were not significantly different from each other (p<0.05). Moreover, the produced colorant was tested in ice cream as a model food. There was no statistically significant difference between the total color differences of ice creams prepared with the commercial colorants and carnation flowers-based colorants.

Project Number

FYL-2016-1742

References

  • [1] Bridle, P.,Timberlake, C. (1997). Anthocyanins as natural food colours-selected aspects. Food chemistry, 58(1-2), 103-109.
  • [2] Giusti, M.M.,Wrolstad, R.E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217-225.
  • [3] Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60, 38-50.
  • [4] Downham, A., Collins, P. (2000). Colouring our foods in the last and next millennium. International Journal of Food Science & Technology, 35(1), 5-22.
  • [5] Bilek, S.E., Yılmaz, F.M., Özkan, G. (2017). The effects of industrial production on black carrot concentrate quality and encapsulation of anthocyanins in whey protein hydrogels. Food and Bioproducts Processing, 102, 72-80.
  • [6] Cevallos-Casals, B.A.,Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food chemistry, 86(1), 69-77.
  • [7] Fei, P., Zeng, F., Zheng, S., Chen, Q., Hu, Y.,Cai, J. (2021). Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments, 184, 108852.
  • [8] Fenger, J.-A., Roux, H., Robbins, R.J., Collins, T.M.,Dangles, O. (2021). The influence of phenolic acyl groups on the color of purple sweet potato anthocyanins and their metal complexes. Dyes and Pigments, 185: 108792.
  • [9] Peron, D., Fraga, S.,Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food Chemistry, 232, 836-840.
  • [10] Ersus, S.,Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805-812.
  • [11] Ayenampudi, S.B., Verma, R.,Adeyeye, S.A.O. (2022). The potential health benefits and food applications of jamun (Syzygium cumini L.), an indigenous fruit of India. Nutrition & Food Science, (ahead-of-print).
  • [12] Koç, B.E., Türkyılmaz, M.,Özkan, M. (2012). Siyah havuç suyu konsantresinin akide şekerlerinde renklendirici olarak kullanılması ve monomerik antosiyaninlerin depolama stabilitesinin belirlenmesi. Academic Food Journal/Akademik GIDA, 10(1), 30-39.
  • [13] Sagdic, O., Ekici, L., Ozturk, I., Tekinay, T., Polat, B., Tastemur, B., Bayram, O.,Senturk, B. (2013). Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins. Food and Chemical Toxicology, 58, 432-439.
  • [14] Nakayama, M., Koshioka, M., Yoshida, H., Kan, Y., Fukui, Y., Koike, A.,Yamaguchi, M.-a. (2000). Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry, 55(8), 937-939.
  • [15] Çimen, E. (2013). Kırmızı gül yapraklarından farklı ekstraksiyon yöntemleri ile doğal boyarmadde eldesi ve tekstil alanında uygulanabilirliği, in Fen Bilimleri Enstitüsü, Yıldız Teknik Üniversitesi: İstanbul.
  • [16] Bayram, O., Sagdic, O.,Ekici, L. (2015). Natural food colorants and bioactive extracts from some edible flowers. Journal of Applied Botany and Food Quality, 88, 170-176.
  • [17] Dinkova, R., Vardakas, A., Dimitrova, E., Weber, F., Passon, M., Shikov, V., Schieber, A.,Mihalev, K. (2022). Valorization of rose (Rosa damascena Mill.) by-product: polyphenolic characterization and potential food application. European Food Research and Technology: 1-8.
  • [18] Vural, E. (2017). Karanfil çiçeğinden antosiyanin ekstraktı eldesi ve doğal gıda renklendiricisi olarak stabilitesinin incelenmesi, in Fen Bilimleri Enstitüsü, Akdeniz Üniversitesi: Antalya. 84.
  • [19] Jafari, S.-M., Mahdavi-Khazaei, K.,Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20-25.
  • [20] Laokuldilok, T.,Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT-Food Science and Technology, 64(1), 405-411.
  • [21] Wrolstad, R.E.,Smith, D.E. (2017). Color Analysis, in Food Analysis, S.S. Nielsen, Editor., Springer International Publishing: Cham. 545-555.
  • [22] Bellary, A.N., Indiramma, A., Prakash, M., Baskaran, R.,Rastogi, N.K. (2016). Anthocyanin infused watermelon rind and its stability during storage. Innovative Food Science & Emerging Technologies, 33: 554-562.
  • [23] Franceschinis, L., Salvatori, D.M., Sosa, N.,Schebor, C. (2014). Physical and functional properties of blackberry freeze-and spray-dried powders. Drying Technology, 32(2), 197-207.
  • [24] Tonon, R.V., Brabet, C.,Hubinger, M.D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914.
  • [25] Fuleki, T.,Francis, F. (1968). Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. Journal of Food Science, 33(1), 72-77.
  • [26] Reyes, L.F.,Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894.
  • [27] Türkyılmaz, M.,Özkan, M. (2012). Kinetics of anthocyanin degradation and polymeric colour formation in black carrot juice concentrates during storage. International Journal of Food Science & Technology, 47(11), 2273-2281.
  • [28] Cemeroğlu, B. (2015). Reaksiyon kinetiği. Bizim Grup Basımevi, Ankara.
  • [29] Lehotay, S.J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90(2), 485-520.
  • [30] Ekici, L. (2011). Üzüm kabuğu, siyah havuç ve kırmızı lahanadan ekstrakte edilen antosiyanin bazlı renk maddelerinin biyolojik özelliklerinin belirlenmesi ve bazı gıda maddelerinde renklendirici olarak kullanımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği ABD, Haziran.
  • [31] Bhandari, B.R., Datta, N.,Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying technology, 15(2): 671-684.
  • [32] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A.K.,Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675.
  • [33] Tontul, I.,Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102.
  • [34] Arici, M., Karasu, S., Baslar, M., Toker, O.S., Sagdic, O.,Karaagacli, M. (2016). Tulip petal as a novel natural food colorant source: Extraction optimization and stability studies. Industrial Crops and Products, 91, 215-222.
  • [35] CAO, S.-q., Liang, L.,PAN, S.-y. (2011). Thermal degradation kinetics of anthocyanins and visual color of blood orange juice. Agricultural Sciences in China, 10(12), 1992-1997.
  • [36] Hou, Z., Qin, P., Zhang, Y., Cui, S.,Ren, G. (2013). Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691-697.
  • [37] Kırca, A., Özkan, M.,Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218.
  • [38] Li, J., Li, X.-d., Zhang, Y., Zheng, Z.-d., Qu, Z.-y., Liu, M., Zhu, S.-h., Liu, S., Wang, M.,Qu, L. (2013). Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry, 136(3-4), 1429-1434.
  • [39] Dasika, R., Tangirala, S.,Naishadham, P. (2012). Pesticide residue analysis of fruits and vegetables. Journal of Environmental Chemistry and Ecotoxicology, 4(2), 19-28.
  • [40] Loukri, A., Christaki, S., Kalogiouri, N.P., Menkissoglu-Spiroudi, U.,Mourtzinos, I. (2022). Anthocyanin-rich extracts from Cornelian cherry pomace as a natural food colorant: a spectroscopic and LC-QTOF-MS study. European Food Research and Technology, 248(12), 2901-2912.

Taze Atık Karanfil Çiçeği Taçyapraklarından Üretilen Antosiyanin Bazlı Doğal Gıda Renklendiricisi: Bozunma Kinetiği Üzerine pH, Sıcaklık ve Kurutma Yönteminin Etkisi ile Dondurmada Kullanılması

Year 2023, Volume: 21 Issue: 4, 312 - 322, 31.12.2023
https://doi.org/10.24323/akademik-gida.1422109

Abstract

Karanfil çiçeği (Dianthus caryophyllus L.) üretimi sırasından kısa boylu, kırık saplı veya tomurcuğu fazla açılmış çiçekler serada kalmakta ve tüm kesim işlemleri tamamlandıktan sonra sökülüp atılmaktadır. Kesimi yapılan çiçeklerin buket haline getirilmesi aşamasında da yine atık çiçekler ortaya çıkmaktadır. Bu nedenle mevcut çalışmada bu taze atık çiçeklerin doğal gıda renklendiricisi üretiminde değerlendirilmesi amaçlanmıştır. Atık karanfil çiçeklerinden antosiyanin ekstraktı elde edildikten sonra donuk ve püskürterek kurutma yöntemleriyle toz ürün formuna getirilmiştir. Tozların çeşitli fiziksel özellikleri analiz edilmiş ve istatistiksel olarak karşılaştırılmıştır. Antosiyanin bazlı renklendirici ilave edilecek malzemelerin planlanmasında antosiyaninlerin bozunma parametrelerinin dikkate alınması gerektiğinden karanfil antosiyaninlerinin farklı pH (2.6, 4.0 ve 6.0) ve sıcaklık (70, 80 ve 90°C) değerlerinde kinetik parametreleri hesaplanmıştır. pH 2.6'dan 6.0'a yükseldiğinde, sıvı ekstrakt hariç tüm örneklerin aktivasyon enerjileri keskin bir şekilde azalmıştır. Sıcaklık artışına en çok ve en az duyarlı numuneler sırasıyla pH 2.6'daki donuk kurutulmuş numuneler ve pH 6.0'daki püskürtülerek kurutulmuş numuneler olmuştur. Tüm veriler incelendiğinde, sadece sıvı ekstrakt örneğinin pH 2.6 ve pH 4.0'daki aktivasyon enerjileri birbirinden önemli ölçüde farklı olmadığı görülmüştür (p<0.05). Ayrıca elde edilen renklendiriciler, model gıda olarak dondurmada test edilmiştir. Ticari renklendiricilerle hazırlanan dondurmalar ile karanfil çiçeği bazlı renklendiricilerle hazırlanan dondurmaların toplam renk farklılıkları arasında istatistiksel olarak anlamlı bir fark bulunmamıştır.

Supporting Institution

The Scientific Research Projects Coordination Unit of Akdeniz University

Project Number

FYL-2016-1742

Thanks

The authors would like to thank the Scientific Research Projects Coordination Unit of Akdeniz University (Antalya, Türkiye) (Project Number: FYL-2016-1742) for financial support, The Council of Higher Education of the Republic of Türkiye 100/2000 PhD program for grant, Akdeniz University Food Safety and Agricultural Research Center for pesticide residue analysis and “ImProofer” inc. for proofreading the article.

References

  • [1] Bridle, P.,Timberlake, C. (1997). Anthocyanins as natural food colours-selected aspects. Food chemistry, 58(1-2), 103-109.
  • [2] Giusti, M.M.,Wrolstad, R.E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217-225.
  • [3] Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2017). Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. Journal of Food Composition and Analysis, 60, 38-50.
  • [4] Downham, A., Collins, P. (2000). Colouring our foods in the last and next millennium. International Journal of Food Science & Technology, 35(1), 5-22.
  • [5] Bilek, S.E., Yılmaz, F.M., Özkan, G. (2017). The effects of industrial production on black carrot concentrate quality and encapsulation of anthocyanins in whey protein hydrogels. Food and Bioproducts Processing, 102, 72-80.
  • [6] Cevallos-Casals, B.A.,Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food chemistry, 86(1), 69-77.
  • [7] Fei, P., Zeng, F., Zheng, S., Chen, Q., Hu, Y.,Cai, J. (2021). Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dyes and Pigments, 184, 108852.
  • [8] Fenger, J.-A., Roux, H., Robbins, R.J., Collins, T.M.,Dangles, O. (2021). The influence of phenolic acyl groups on the color of purple sweet potato anthocyanins and their metal complexes. Dyes and Pigments, 185: 108792.
  • [9] Peron, D., Fraga, S.,Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food Chemistry, 232, 836-840.
  • [10] Ersus, S.,Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80(3), 805-812.
  • [11] Ayenampudi, S.B., Verma, R.,Adeyeye, S.A.O. (2022). The potential health benefits and food applications of jamun (Syzygium cumini L.), an indigenous fruit of India. Nutrition & Food Science, (ahead-of-print).
  • [12] Koç, B.E., Türkyılmaz, M.,Özkan, M. (2012). Siyah havuç suyu konsantresinin akide şekerlerinde renklendirici olarak kullanılması ve monomerik antosiyaninlerin depolama stabilitesinin belirlenmesi. Academic Food Journal/Akademik GIDA, 10(1), 30-39.
  • [13] Sagdic, O., Ekici, L., Ozturk, I., Tekinay, T., Polat, B., Tastemur, B., Bayram, O.,Senturk, B. (2013). Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins. Food and Chemical Toxicology, 58, 432-439.
  • [14] Nakayama, M., Koshioka, M., Yoshida, H., Kan, Y., Fukui, Y., Koike, A.,Yamaguchi, M.-a. (2000). Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry, 55(8), 937-939.
  • [15] Çimen, E. (2013). Kırmızı gül yapraklarından farklı ekstraksiyon yöntemleri ile doğal boyarmadde eldesi ve tekstil alanında uygulanabilirliği, in Fen Bilimleri Enstitüsü, Yıldız Teknik Üniversitesi: İstanbul.
  • [16] Bayram, O., Sagdic, O.,Ekici, L. (2015). Natural food colorants and bioactive extracts from some edible flowers. Journal of Applied Botany and Food Quality, 88, 170-176.
  • [17] Dinkova, R., Vardakas, A., Dimitrova, E., Weber, F., Passon, M., Shikov, V., Schieber, A.,Mihalev, K. (2022). Valorization of rose (Rosa damascena Mill.) by-product: polyphenolic characterization and potential food application. European Food Research and Technology: 1-8.
  • [18] Vural, E. (2017). Karanfil çiçeğinden antosiyanin ekstraktı eldesi ve doğal gıda renklendiricisi olarak stabilitesinin incelenmesi, in Fen Bilimleri Enstitüsü, Akdeniz Üniversitesi: Antalya. 84.
  • [19] Jafari, S.-M., Mahdavi-Khazaei, K.,Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20-25.
  • [20] Laokuldilok, T.,Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT-Food Science and Technology, 64(1), 405-411.
  • [21] Wrolstad, R.E.,Smith, D.E. (2017). Color Analysis, in Food Analysis, S.S. Nielsen, Editor., Springer International Publishing: Cham. 545-555.
  • [22] Bellary, A.N., Indiramma, A., Prakash, M., Baskaran, R.,Rastogi, N.K. (2016). Anthocyanin infused watermelon rind and its stability during storage. Innovative Food Science & Emerging Technologies, 33: 554-562.
  • [23] Franceschinis, L., Salvatori, D.M., Sosa, N.,Schebor, C. (2014). Physical and functional properties of blackberry freeze-and spray-dried powders. Drying Technology, 32(2), 197-207.
  • [24] Tonon, R.V., Brabet, C.,Hubinger, M.D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914.
  • [25] Fuleki, T.,Francis, F. (1968). Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. Journal of Food Science, 33(1), 72-77.
  • [26] Reyes, L.F.,Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885-894.
  • [27] Türkyılmaz, M.,Özkan, M. (2012). Kinetics of anthocyanin degradation and polymeric colour formation in black carrot juice concentrates during storage. International Journal of Food Science & Technology, 47(11), 2273-2281.
  • [28] Cemeroğlu, B. (2015). Reaksiyon kinetiği. Bizim Grup Basımevi, Ankara.
  • [29] Lehotay, S.J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90(2), 485-520.
  • [30] Ekici, L. (2011). Üzüm kabuğu, siyah havuç ve kırmızı lahanadan ekstrakte edilen antosiyanin bazlı renk maddelerinin biyolojik özelliklerinin belirlenmesi ve bazı gıda maddelerinde renklendirici olarak kullanımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği ABD, Haziran.
  • [31] Bhandari, B.R., Datta, N.,Howes, T. (1997). Problems associated with spray drying of sugar-rich foods. Drying technology, 15(2): 671-684.
  • [32] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A.K.,Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675.
  • [33] Tontul, I.,Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102.
  • [34] Arici, M., Karasu, S., Baslar, M., Toker, O.S., Sagdic, O.,Karaagacli, M. (2016). Tulip petal as a novel natural food colorant source: Extraction optimization and stability studies. Industrial Crops and Products, 91, 215-222.
  • [35] CAO, S.-q., Liang, L.,PAN, S.-y. (2011). Thermal degradation kinetics of anthocyanins and visual color of blood orange juice. Agricultural Sciences in China, 10(12), 1992-1997.
  • [36] Hou, Z., Qin, P., Zhang, Y., Cui, S.,Ren, G. (2013). Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50(2), 691-697.
  • [37] Kırca, A., Özkan, M.,Cemeroğlu, B. (2007). Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry, 101(1), 212-218.
  • [38] Li, J., Li, X.-d., Zhang, Y., Zheng, Z.-d., Qu, Z.-y., Liu, M., Zhu, S.-h., Liu, S., Wang, M.,Qu, L. (2013). Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chemistry, 136(3-4), 1429-1434.
  • [39] Dasika, R., Tangirala, S.,Naishadham, P. (2012). Pesticide residue analysis of fruits and vegetables. Journal of Environmental Chemistry and Ecotoxicology, 4(2), 19-28.
  • [40] Loukri, A., Christaki, S., Kalogiouri, N.P., Menkissoglu-Spiroudi, U.,Mourtzinos, I. (2022). Anthocyanin-rich extracts from Cornelian cherry pomace as a natural food colorant: a spectroscopic and LC-QTOF-MS study. European Food Research and Technology, 248(12), 2901-2912.
There are 40 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Ecem Vural 0000-0002-0527-5025

Ayhan Topuz 0000-0002-6610-9143

Project Number FYL-2016-1742
Publication Date December 31, 2023
Submission Date February 23, 2023
Published in Issue Year 2023 Volume: 21 Issue: 4

Cite

APA Vural, E., & Topuz, A. (2023). Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream. Akademik Gıda, 21(4), 312-322. https://doi.org/10.24323/akademik-gida.1422109
AMA Vural E, Topuz A. Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream. Akademik Gıda. December 2023;21(4):312-322. doi:10.24323/akademik-gida.1422109
Chicago Vural, Ecem, and Ayhan Topuz. “Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of PH, Temperature, and Drying Method on Its Degradation Kinetics and Its Use in Ice Cream”. Akademik Gıda 21, no. 4 (December 2023): 312-22. https://doi.org/10.24323/akademik-gida.1422109.
EndNote Vural E, Topuz A (December 1, 2023) Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream. Akademik Gıda 21 4 312–322.
IEEE E. Vural and A. Topuz, “Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream”, Akademik Gıda, vol. 21, no. 4, pp. 312–322, 2023, doi: 10.24323/akademik-gida.1422109.
ISNAD Vural, Ecem - Topuz, Ayhan. “Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of PH, Temperature, and Drying Method on Its Degradation Kinetics and Its Use in Ice Cream”. Akademik Gıda 21/4 (December 2023), 312-322. https://doi.org/10.24323/akademik-gida.1422109.
JAMA Vural E, Topuz A. Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream. Akademik Gıda. 2023;21:312–322.
MLA Vural, Ecem and Ayhan Topuz. “Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of PH, Temperature, and Drying Method on Its Degradation Kinetics and Its Use in Ice Cream”. Akademik Gıda, vol. 21, no. 4, 2023, pp. 312-2, doi:10.24323/akademik-gida.1422109.
Vancouver Vural E, Topuz A. Anthocyanin-Based Natural Food Colorant from Fresh Waste Carnation Flower Petals: Effect of pH, Temperature, and Drying Method on its Degradation Kinetics and its Use in Ice Cream. Akademik Gıda. 2023;21(4):312-2.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).