Research Article
BibTex RIS Cite

Properties of Basalt Fiber-reinforced Lightweight Geopolymer Mortars Produced with Expanded Glass Aggregate

Year 2024, Volume: 13 Issue: 1, 205 - 215, 24.03.2024
https://doi.org/10.17798/bitlisfen.1379342

Abstract

Geopolymers are new-generation construction materials that have attracted attention recently and can be an alternative to cement. In the production of these materials, aluminosilicate powder materials are used together with alkali or acid solutions. Geopolymers have different types of superiorities, such as rapid strength gain, high mechanical properties and good durability. This experimental study investigated the properties of expanded glass aggregate-bearing Class F fly ash-based lightweight geopolymer mortars. The fresh unit weight, water absorption capacity, compressive strength and high-temperature resistance (upon exposure to 900°C) of the mortars were determined. In addition, basalt fiber addition's effects on these properties were investigated. The inclusion ratios of basalt fiber were 0.1%, 0.2% and 0.4% by volume. The compressive strengths of fiber-free lightweight mixture and mixtures, including 0.1%, 0.2% and 0.4% basalt fiber, were found to be 8.2, 8.9, 9.0 and 8.0 MPa, respectively. The compressive strength of all lightweight mortars increased between 61.3% and 76.4% after the high-temperature effect. The results proved that it is possible to produce expanded glass aggregate-bearing lightweight geopolymer mortars with acceptable mechanical properties.

Ethical Statement

-There is no conflict of interest. -The study is complied with research and publication ethics. -This study was presented orally at the “5th International Conference on Natural and Applied Science and Engineering” held between 26-28 May 2023, and published in the conference's abstract book.

References

  • [1] C. Zhang, H. Khorshidi, E. Najafi and M. Ghasemi, “Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review,” J. Clean. Prod., vol. 384, 2023, Art. no.135390, doi: 10.1016/j.jclepro.2022.135390.
  • [2] B. Kanagaraj, N. Anand, U. J. Alengaram, S. R. Raj and G Jayakumar, “Promulgation of engineering and sustainable performances of self-compacting geopolymer concrete,” J. Build. Eng., vol. 68, 2023, Art. no. 106093, doi: 10.1016/j.jobe.2023.106093.
  • [3] A. M. Rashad, 2018. “A synopsis about the effect of basalt and natural fibers on geopolymer properties,” Nat. Resour. Conserve. Res., 1. doi: 10.24294/nrcr.v1i2.752.
  • [4] J. Zhao, J. Xie, J. Wu, C. Zhao and B. Zhang, “Workability, compressive strength, and microstructures of one-part rubberized geopolymer mortar,” J. Build. Eng., vol. 68, 2023, Art. no. 106088, doi: 10.1016/j.jobe.2023.106088.
  • [5] E. H. Alakara, “Investigation of the Use of Waste Bricks Obtained from Construction Demolition Wastes in Geopolymer Mortars,” Gaziosmanpasa J. Sci. Res., vol. 11, no. 3, pp. 251-259, 2022.
  • [6] J. Davidovits, “Geopolymer cement a review,” Geopolymer Science and Technics, Technical Paper 21,pp. 1-11, 2013.
  • [7] Z. Zidi, M. Ltifi, Z. B. Ayadi, L. E. Mir and X. R. Novoa, “Effect of nano-ZnO on mechanical and thermal properties of geopolymer,” J. Asian Ceram. Soc., vol. 8, no. 1, pp. 1-9, 2020, doi: 10.1080/21870764.2019.1693682.
  • [8] H. R. Pradeep, A. Shashishankar and B. R. Niranjan, “Development of geopolymer lightweight concrete using industrial by-products,” Int. J of Latest Tech. in Eng., Management & Applied Science, vol. 6, no. 8, pp. 49-52, 2017.
  • [9] K. Eryılmaz, R. Polat, F. Karagöl and D. Turhan, “Investigation of usability of aggregates obtained from geopolymer concrete wastes in geopolymer concrete,” Igdır University J. Ins. of Sci. Tech., vol. 13, no. 1, pp. 419-431, 2023.
  • [10] M. R. Maaze, S. Shrivastava, “Design development of sustainable brick-waste geopolymer brick using full factorial design methodology,” Constr. Build. Mater., vol. 370, 2023, Art. no. 130655, doi: 10.1016/j.conbuildmat.2023.130655.
  • [11] R. M. Novais, R. C. Pullar and J. A. Labrincha, “Geopolymer foams: An overview of recent advancements,” Prog. Mater. Sci., vol. 109, 2020, Art. no. 100621, doi: 10.1016/j.pmatsci.2019.100621.
  • [12] W. I. Khalil, W. A. Abbas and I. F. Nasser, “Mechanical properties and thermal conductivity of lightweight geopolymer concrete,” 1st International Scientific Conference of Engineering Sciences-3rd Scientific Conference of Engineering Science, Diyala, Iraq, Jan. 10-11, 2018, p. 175-180.
  • [13] O. Öztürk, “Engineering performance of reinforced lightweight geopolymer concrete beams produced by ambient curing,” Struct. Concr., vol. 23, pp. 2076-2087, 2022, doi: 10.1002/suco.202000664.
  • [14] S. Saloma, A. P. Usman, H. Hanafiah and C. V. Ramadhanty, “The durability of lightweight geopolymer concrete (LGC) on chloride resistance,” Civ. Eng. Archit., vol. 10, no. 5, pp. 1881-1890, 2022, doi: 10.13189/cea.2022.100514.
  • [15] R. Nemes and Z. Józsa, “Strength of lightweight glass aggregate concrete,” J. Mater. Civ. Eng., vol. 18, no. 5, pp. 710-714, 2006, doi: 10.1061/(ASCE)0899-1561(2006)18:5(710).
  • [16] A. Yousefi, W. Tang, M. Khavarian, C. Fang and S. Wang, “Thermal and mechanical properties of cement mortar composite containing recycled expanded glass aggregate and nano titanium dioxide,” Appl. Sci., vol. 10, 2020, Art. no. 2246, doi: 10.3390/app10072246.
  • [17] S. K. Adhikary, D. K. Ashish and Z. Rudzionis, “Expanded glass as light-weight aggregate in concrete – A review,” J. Clean. Prod., vol. 313, 2021, Art. no. 127848, doi: 10.1016/j.jclepro.2021.127848.
  • [18] J. Seputyte-Jucike and M. Sinica, “The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete,” Eng. Struct. Tech., vol. 8, no. 1, pp. 31-40, 2016, doi: 10.3846/2029882X.2016.1162671.
  • [19] G. Bumanis, D. Bajare and A. Korjakins, “Mechanical and thermal properties of lightweight concrete made from expanded glass,” J. Sustain. Archit. Civ. Eng., vol. 2, no. 3, pp. 26-32, 2013, doi: 10.5755/j01.sace.2.3.2790.
  • [20] G. Bumanis, D. Bajare, J. Locs and A. Korjakins, “Alkali–silica reactivity of expanded glass granules in structure of lightweight concrete,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 47, pp. 1-6, 2013, doi: 10.1088/1757-899X/47/1/012022.
  • [21] W. Abbas, W. Khalil and I. Nasser, “Production of lightweight geopolymer concrete using artificial local lightweight aggregate,”. MATEC Web of Conferences, vol. 162, 2018, Art. no. 02024, doi: 10.1051/matecconf/201816202024.
  • [22] D. M. A. Huiskes, A. Keulena, Q. L. Yua and H. J. H. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” Mater. Des., vol. 89, pp. 516-526, 2016, doi: 10.1016/j.matdes.2015.09.167.
  • [23] G. Humur and A. Cevik, “Mechanical characterization of lightweight engineered geopolymer composites exposed to elevated temperatures,” Ceram. Int., vol. 48, pp. 13634-13650, 2022, doi: 10.1016/j.ceramint.2022.01.243.
  • [24] M. Priyanka, M. Karthikeyan and M. S. R. Chand, “Development of mix proportions of geopolymer lightweight aggregate concrete with LECA,” Mater. Today: Proc., vol. 27, pp. 958-962, 2020, doi: 10.1016/j.matpr.2020.01.271.
  • [25] TS EN 459-2, Building lime - Part 2: Test methods, Ankara, Turkiye, 2021.
  • [26] K. Mermerdas, S. Ipek, N. H. Sor, E. S. Mulapeer and S. Ekmen, “The Impact of Artificial Lightweight Aggregate on the Engineering Features of Geopolymer Mortar,” Turkish J. Nat. Sci., vol. 9, no. 1, pp. 79-90, 2020, doi: 10.46810/tdfd.718895.
  • [27] B. A. Tayeh, A. M. Zeyad, I. S. Agwa and M. Amin, “Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete,” Case Stud. Constr. Mater., vol. 15, 2021, Art. no. e00673, doi: 10.1016/j.cscm.2021.e00673.
  • [28] M. A. Elrahman, S. Y. Chung and D. Stephan, “Effect of different expanded aggregates on the lightweight concrete properties,” Mag. Concr. Res., vol. 71, no. 2, pp. 95-107, 2019, doi: 10.1680/jmacr.17.00465.
  • [29] I. Hager, M. Sitarz and K. Mroz, “Fly-ash based geopolymer mortar for high-temperature application – effect of slag addition,” J. Clean. Prod., vol. 316, 2021, Art. no. 128168, doi: 10.1016/j.jclepro.2021.128168.
  • [30] R. Zhao and J. G. Sanjayan, “Geopolymer and portland cement concretes in simulated fire,” Mag. Concr. Res., vol. 63, no. 3, pp. 163-173, 2011, doi: 10.1680/macr.9.00110.
  • [31] K. M. Klima, K.Schollbach, H. J. H. Brouwers and Q. Yu, “Enhancing the thermal performance of class F fly ash-based geopolymer by sodalite,” Constr. Build. Mater., vol. 314, 2022, Art. no. 125574, doi: 10.1016/j.conbuildmat.2021.125574.
  • [32] M. S. T. Masoule, N. Bahrami, M. Karimzadeh, B. Mohasanati, P. Shoaei, F. Ameri and T. Ozbakkaloglu, “Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure,” Ceram. Int., vol. 48, pp. 10347-10371, 2022, doi: 10.1016/j.ceramint.2022.01.298.
  • [33] M. F. Ali and M. M. V. Natrajan, “A review of geopolymer composite thermal properties,” IOP Conf. Series: Earth and Environmental Science, vol. 822, 2021, Art. no. 012051, doi: 10.1088/1755-1315/822/1/012051.
  • [34] W. D. A. Rickard, C.S. Kealley and A. van Riessen, “Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model,” J. Am. Ceram. Soc., vol. 98, no. 3, pp. 929-939, 2015, doi: 10.1111/jace.13370
  • [35] P. Payakaniti, N. Chuewangkam, R. Yensano, S. Pinitsoontorn and P. Chindaprasirt, “Changes in compressive strength, microstructure and magnetic properties of a high-calcium fly ash geopolymer subjected to high temperatures,” Constr. Build. Mater., vol. 265, 2020, Art. no. 120650, doi: 10.1016/j.conbuildmat.2020.120650.
Year 2024, Volume: 13 Issue: 1, 205 - 215, 24.03.2024
https://doi.org/10.17798/bitlisfen.1379342

Abstract

References

  • [1] C. Zhang, H. Khorshidi, E. Najafi and M. Ghasemi, “Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review,” J. Clean. Prod., vol. 384, 2023, Art. no.135390, doi: 10.1016/j.jclepro.2022.135390.
  • [2] B. Kanagaraj, N. Anand, U. J. Alengaram, S. R. Raj and G Jayakumar, “Promulgation of engineering and sustainable performances of self-compacting geopolymer concrete,” J. Build. Eng., vol. 68, 2023, Art. no. 106093, doi: 10.1016/j.jobe.2023.106093.
  • [3] A. M. Rashad, 2018. “A synopsis about the effect of basalt and natural fibers on geopolymer properties,” Nat. Resour. Conserve. Res., 1. doi: 10.24294/nrcr.v1i2.752.
  • [4] J. Zhao, J. Xie, J. Wu, C. Zhao and B. Zhang, “Workability, compressive strength, and microstructures of one-part rubberized geopolymer mortar,” J. Build. Eng., vol. 68, 2023, Art. no. 106088, doi: 10.1016/j.jobe.2023.106088.
  • [5] E. H. Alakara, “Investigation of the Use of Waste Bricks Obtained from Construction Demolition Wastes in Geopolymer Mortars,” Gaziosmanpasa J. Sci. Res., vol. 11, no. 3, pp. 251-259, 2022.
  • [6] J. Davidovits, “Geopolymer cement a review,” Geopolymer Science and Technics, Technical Paper 21,pp. 1-11, 2013.
  • [7] Z. Zidi, M. Ltifi, Z. B. Ayadi, L. E. Mir and X. R. Novoa, “Effect of nano-ZnO on mechanical and thermal properties of geopolymer,” J. Asian Ceram. Soc., vol. 8, no. 1, pp. 1-9, 2020, doi: 10.1080/21870764.2019.1693682.
  • [8] H. R. Pradeep, A. Shashishankar and B. R. Niranjan, “Development of geopolymer lightweight concrete using industrial by-products,” Int. J of Latest Tech. in Eng., Management & Applied Science, vol. 6, no. 8, pp. 49-52, 2017.
  • [9] K. Eryılmaz, R. Polat, F. Karagöl and D. Turhan, “Investigation of usability of aggregates obtained from geopolymer concrete wastes in geopolymer concrete,” Igdır University J. Ins. of Sci. Tech., vol. 13, no. 1, pp. 419-431, 2023.
  • [10] M. R. Maaze, S. Shrivastava, “Design development of sustainable brick-waste geopolymer brick using full factorial design methodology,” Constr. Build. Mater., vol. 370, 2023, Art. no. 130655, doi: 10.1016/j.conbuildmat.2023.130655.
  • [11] R. M. Novais, R. C. Pullar and J. A. Labrincha, “Geopolymer foams: An overview of recent advancements,” Prog. Mater. Sci., vol. 109, 2020, Art. no. 100621, doi: 10.1016/j.pmatsci.2019.100621.
  • [12] W. I. Khalil, W. A. Abbas and I. F. Nasser, “Mechanical properties and thermal conductivity of lightweight geopolymer concrete,” 1st International Scientific Conference of Engineering Sciences-3rd Scientific Conference of Engineering Science, Diyala, Iraq, Jan. 10-11, 2018, p. 175-180.
  • [13] O. Öztürk, “Engineering performance of reinforced lightweight geopolymer concrete beams produced by ambient curing,” Struct. Concr., vol. 23, pp. 2076-2087, 2022, doi: 10.1002/suco.202000664.
  • [14] S. Saloma, A. P. Usman, H. Hanafiah and C. V. Ramadhanty, “The durability of lightweight geopolymer concrete (LGC) on chloride resistance,” Civ. Eng. Archit., vol. 10, no. 5, pp. 1881-1890, 2022, doi: 10.13189/cea.2022.100514.
  • [15] R. Nemes and Z. Józsa, “Strength of lightweight glass aggregate concrete,” J. Mater. Civ. Eng., vol. 18, no. 5, pp. 710-714, 2006, doi: 10.1061/(ASCE)0899-1561(2006)18:5(710).
  • [16] A. Yousefi, W. Tang, M. Khavarian, C. Fang and S. Wang, “Thermal and mechanical properties of cement mortar composite containing recycled expanded glass aggregate and nano titanium dioxide,” Appl. Sci., vol. 10, 2020, Art. no. 2246, doi: 10.3390/app10072246.
  • [17] S. K. Adhikary, D. K. Ashish and Z. Rudzionis, “Expanded glass as light-weight aggregate in concrete – A review,” J. Clean. Prod., vol. 313, 2021, Art. no. 127848, doi: 10.1016/j.jclepro.2021.127848.
  • [18] J. Seputyte-Jucike and M. Sinica, “The effect of expanded glass and polystyrene waste on the properties of lightweight aggregate concrete,” Eng. Struct. Tech., vol. 8, no. 1, pp. 31-40, 2016, doi: 10.3846/2029882X.2016.1162671.
  • [19] G. Bumanis, D. Bajare and A. Korjakins, “Mechanical and thermal properties of lightweight concrete made from expanded glass,” J. Sustain. Archit. Civ. Eng., vol. 2, no. 3, pp. 26-32, 2013, doi: 10.5755/j01.sace.2.3.2790.
  • [20] G. Bumanis, D. Bajare, J. Locs and A. Korjakins, “Alkali–silica reactivity of expanded glass granules in structure of lightweight concrete,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 47, pp. 1-6, 2013, doi: 10.1088/1757-899X/47/1/012022.
  • [21] W. Abbas, W. Khalil and I. Nasser, “Production of lightweight geopolymer concrete using artificial local lightweight aggregate,”. MATEC Web of Conferences, vol. 162, 2018, Art. no. 02024, doi: 10.1051/matecconf/201816202024.
  • [22] D. M. A. Huiskes, A. Keulena, Q. L. Yua and H. J. H. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” Mater. Des., vol. 89, pp. 516-526, 2016, doi: 10.1016/j.matdes.2015.09.167.
  • [23] G. Humur and A. Cevik, “Mechanical characterization of lightweight engineered geopolymer composites exposed to elevated temperatures,” Ceram. Int., vol. 48, pp. 13634-13650, 2022, doi: 10.1016/j.ceramint.2022.01.243.
  • [24] M. Priyanka, M. Karthikeyan and M. S. R. Chand, “Development of mix proportions of geopolymer lightweight aggregate concrete with LECA,” Mater. Today: Proc., vol. 27, pp. 958-962, 2020, doi: 10.1016/j.matpr.2020.01.271.
  • [25] TS EN 459-2, Building lime - Part 2: Test methods, Ankara, Turkiye, 2021.
  • [26] K. Mermerdas, S. Ipek, N. H. Sor, E. S. Mulapeer and S. Ekmen, “The Impact of Artificial Lightweight Aggregate on the Engineering Features of Geopolymer Mortar,” Turkish J. Nat. Sci., vol. 9, no. 1, pp. 79-90, 2020, doi: 10.46810/tdfd.718895.
  • [27] B. A. Tayeh, A. M. Zeyad, I. S. Agwa and M. Amin, “Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete,” Case Stud. Constr. Mater., vol. 15, 2021, Art. no. e00673, doi: 10.1016/j.cscm.2021.e00673.
  • [28] M. A. Elrahman, S. Y. Chung and D. Stephan, “Effect of different expanded aggregates on the lightweight concrete properties,” Mag. Concr. Res., vol. 71, no. 2, pp. 95-107, 2019, doi: 10.1680/jmacr.17.00465.
  • [29] I. Hager, M. Sitarz and K. Mroz, “Fly-ash based geopolymer mortar for high-temperature application – effect of slag addition,” J. Clean. Prod., vol. 316, 2021, Art. no. 128168, doi: 10.1016/j.jclepro.2021.128168.
  • [30] R. Zhao and J. G. Sanjayan, “Geopolymer and portland cement concretes in simulated fire,” Mag. Concr. Res., vol. 63, no. 3, pp. 163-173, 2011, doi: 10.1680/macr.9.00110.
  • [31] K. M. Klima, K.Schollbach, H. J. H. Brouwers and Q. Yu, “Enhancing the thermal performance of class F fly ash-based geopolymer by sodalite,” Constr. Build. Mater., vol. 314, 2022, Art. no. 125574, doi: 10.1016/j.conbuildmat.2021.125574.
  • [32] M. S. T. Masoule, N. Bahrami, M. Karimzadeh, B. Mohasanati, P. Shoaei, F. Ameri and T. Ozbakkaloglu, “Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure,” Ceram. Int., vol. 48, pp. 10347-10371, 2022, doi: 10.1016/j.ceramint.2022.01.298.
  • [33] M. F. Ali and M. M. V. Natrajan, “A review of geopolymer composite thermal properties,” IOP Conf. Series: Earth and Environmental Science, vol. 822, 2021, Art. no. 012051, doi: 10.1088/1755-1315/822/1/012051.
  • [34] W. D. A. Rickard, C.S. Kealley and A. van Riessen, “Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model,” J. Am. Ceram. Soc., vol. 98, no. 3, pp. 929-939, 2015, doi: 10.1111/jace.13370
  • [35] P. Payakaniti, N. Chuewangkam, R. Yensano, S. Pinitsoontorn and P. Chindaprasirt, “Changes in compressive strength, microstructure and magnetic properties of a high-calcium fly ash geopolymer subjected to high temperatures,” Constr. Build. Mater., vol. 265, 2020, Art. no. 120650, doi: 10.1016/j.conbuildmat.2020.120650.
There are 35 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Araştırma Makalesi
Authors

Adil Gültekin 0000-0002-5267-5312

Early Pub Date March 21, 2024
Publication Date March 24, 2024
Submission Date October 21, 2023
Acceptance Date March 11, 2024
Published in Issue Year 2024 Volume: 13 Issue: 1

Cite

IEEE A. Gültekin, “Properties of Basalt Fiber-reinforced Lightweight Geopolymer Mortars Produced with Expanded Glass Aggregate”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 1, pp. 205–215, 2024, doi: 10.17798/bitlisfen.1379342.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS