Review
BibTex RIS Cite

Current Applications in Building and Construction Technical Textiles

Year 2023, Volume: 10 Issue: 2, 456 - 464, 30.11.2023
https://doi.org/10.35193/bseufbd.1249473

Abstract

One of the developing branches of the textile industry is technical textile products. Building and construction technical textiles, which are among the technical textiles, are widely used in the building industry. The fact that building and construction technical textiles offer environmentally friendly, lightweight, high-performance, and sustainable solutions increases the use of these materials day by day. With this review, building and construction technical textiles (buildtech) were examined under subtitles and the studies carried out in this field in recent years were examined. Along with increasing environmental and ecological concerns, sustainable and innovative applications in building and construction technical textiles have come to the fore and this subject has been discussed in this review. According to the results obtained in this context; thanks to the superior properties provided by building and construction technical textiles, it is predicted that their use in the building industry will gradually increase.

References

  • Baier, B. (2010). Technical characteristics and requirements of textiles used for building and construction, Textiles, Polymers and Composites for Buildings University of Duisburg-Essen, Germany, Woodhead Publishing Limited, 49-67.
  • Tabor, J. & Tushar, G. (2019). Building and Construction Textiles. High Perform. Tech. Text.
  • Ecer, K., Güner, O., & Çetin, M. (2021). Avrupa yeşil mutabakatı ve Türkiye ekonomisinin uyum politikaları. İşletme ve iktisat çalışmaları dergisi, 9(2), 125-144.
  • Krishna, P. (2020). An Engineer—Academic Looks Back. In The Mind of an Engineer: Volume 2 239-245 Springer, Singapore.
  • Hu, J., Chen, W., Yang, D., Zhao, B., Song, H. & Ge, B. (2019). Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days. Applied energy, 173, 40-51.
  • Paech, C. (2016). Structural membranes used in modern building facades. Procedia Engineering, 155, 61-70.
  • São João, L., Carvalho, R. & Fangueiro, R. (2016). A study on the durability properties of textile membranes for architectural purposes. Procedia Engineering, 155, 230-237.
  • Shi, T., Hu, J., Chen, W. & Gao, C. (2020). Biaxial tensile behavior and strength of architectural fabric membranes. Polymer Testing, 82, 106230.
  • Tang, X., Rosseler, O., Chen, S., de l’Aulnoit, S. H., Lussier, M. J., Zhang, J. & Destaillats, H. (2021). Self-cleaning and de-pollution efficacies of photocatalytic architectural membranes. Applied Catalysis B: Environmental, 281, 119260.
  • Hu, J., Chen, W., Qu, Y. & Yang, D. (2020). Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance. Engineering Structures, 210, 110292.
  • Sheth, P. J., U.S. (1990). Patent No. 4,929,303Washington, DC: U.S. Patent and Trademark Office.
  • Patnaik, A. (2016). Materials used for acoustic textiles. In Acoustic Textiles . 73-92. Springer, Singapore.
  • Koizumi, T., Tsujiuchi, N., Adachi, A. (2002). The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on the Built Environment, 59, 157-166.
  • Islam, S. & Bhat, G. (2019). Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of environmental management, 251, 109536.
  • Gürani Y. & Doba Kadem F. (2018). Tekstil yüzeylerinin iç mekân tasarımında akustik olarak kullanımı. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi 5(6), 48-55.
  • Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A. & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169.
  • Woo, S. S., Shalev, I. & Barker, R. L. (1994). Heat and moisture transfer through nonwoven fabrics: Part I: Heat transfer. Textile Research Journal, 64(3), 149-162.
  • Briga-Sa, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H. & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160.
  • Hadded, A., Benltoufa, S., Fayala, F. & Jemni, A. (2016). Thermo physical characterisation of recycled textile materials used for building insulating. Journal of building engineering, 5, 34-40.
  • Dissanayake, D. G. K., Weerasinghe, D. U., Wijesinghe, K. A. P. & Kalpage, K. M. D. M. P. (2018). Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Management, 79, 356-361.
  • El Wazna, M., El Fatihi, M., El Bouari, A. & Cherkaoui, O. (2017). Thermo physical characterization of sustainable insulation materials made from textile waste. Journal of Building Engineering, 12, 196-201.
  • Wazna, M. E., Gounni, A., Bouari, A. E., Alami, M. E. & Cherkaoui, O. (2019). Development, characterization and thermal performance of insulating nonwoven fabrics made from textile waste. Journal of Industrial Textiles, 48(7), 1167-1183.
  • Gounni, A., Mabrouk, M. T., El Wazna, M., Kheiri, A., El Alami, M., El Bouari, A., Cherkaoui, O. (2019). Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Applied Thermal Engineering, 149, 475-483.
  • Trajković, D., Jordeva, S., Tomovska, E. & Zafirova, K. (2017). Polyester apparel cutting waste as insulation material. The Journal of The Textile Institute, 108(7), 1238-1245.
  • Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite eco-friendly sound absorbing materials made of recycled textile waste and biopolymers. Materials, 12(23), 4020.
  • Dissanayake, D. G. K., Weerasinghe, D. U., Thebuwanage, L. M. & Bandara, U. A. A. N. (2021). An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber. Journal of Building Engineering, 33, 101606.
  • Siddika, A., Al Mamun, M. A., Ferdous, W. & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs–A state-of-the-art review. Engineering Failure Analysis, 111, 104480.
  • Wu, H., Lin, X. & Zhou, A. (2020). A review of mechanical properties of fibre reinforced concrete at elevated temperatures. Cement and Concrete Research, 135, 106117.
  • Mehta, P. K. & Monteiro, P. J. (2014). Concrete: microstructure, properties and materials. McGraw-Hill Education.
  • Kızılkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S., Akça, A. H. (2015). Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials, 100, 218-224.
  • Sim, J. & Park, C. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6-7), 504-512.
  • Mohod, M. V. (2015). Performance of polypropylene fibre reinforced concrete. IOSR Journal of Mechanical and Civil Engineering, 12(1), 28-36.
  • Qin, Y., Zhang, X., Chai, J., Xu, Z. & Li, S. (2019). Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Construction and Building Materials, 194, 216-225.
  • Chen, X., Zhuge, Y., Al-Gemeel, A. N. & Xiong, Z. (2021). Compressive behaviour of concrete column confined with basalt textile reinforced ECC. Engineering Structures, 243, 112651.
  • Meggers, F., Leibundgut, H., Kennedy, S., Qin, M., Schlaich, M., Sobek, W. & Shukuya, M. (2012). Reduce CO2 from buildings with technology to zero emissions. Sustainable Cities and Society, 2(1), 29-36.
  • Zhu, H., Liang, G., Zhang, Z., Wu, Q. & Du, J. (2019). Partial replacement of metakaolin with thermally treated rice husk ash in metakaolin-based geopolymer. Construction and Building Materials, 221, 527-538.
  • Darsanasiri, A. G. N. D., Matalkah, F., Ramli, S., Al-Jalode, K., Balachandra, A. & Soroushian, P. (2018). Ternary alkali aluminosilicate cement based on rice husk ash, slag and coal fly ash. Journal of Building Engineering, 19, 36-41.
  • Yıldız, S., Balaydın, İ. & Ulucan, Z. Ç. (2007). Pirinç kabuğu külünün beton dayanımına etkisi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 85-91.
  • Hwang, C. L. & Wu, D. S. (1989). Properties of cement paste containing rice husk ash. Special Publication, 114, 733-762.
  • Attmann, O. (2010). Green architecture: advanced technologies and materials. McGraw-Hill Education.
  • Arslan, M. A. & Aktaş, M. (2018). İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi, 21(2), 299-320.
  • Muthuraj, R., Lacoste, C., Lacroix, P. & Bergeret, A. (2019). Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products, 135, 238-245.
  • Antolinc, D., & Filipič, K. E. (2021). Recycling of nonwoven polyethylene terephthalate textile into thermal and acoustic insulation for more sustainable buildings. Polymers, 13(18), 3090.
  • Jaskuła, P., Stienss, M., & Szydłowski, C. (2017). Effect of polymer fibres reinforcement on selected properties of asphalt mixtures. Procedia Engineering, 172, 441-448.
  • Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials, 35, 710-717.
  • Horrocks, A. R. & Anand, S. C. (Eds.), “Handbook of technical textiles”, Elsevier, (2000).
  • Zaman, M. W., Han, J., & Zhang, X. (2022). Evaluating wettability of geotextiles with contact angles. Geotextiles and Geomembranes, 50(4), 825-833.
  • Wu, H., Yao, C., Li, C., Miao, M., Zhong, Y., Lu, Y. & Liu, T, (2020). Review of application and innovation of geotextiles in geotechnical engineering, Materials, 13(7), 1774.
  • Wiewel, B. V., & Lamoree, M. (2016). Geotextile composition, application and ecotoxicology—A review. Journal of Hazardous Materials, 317, 640-655.
  • Valle, S. B., Albay, R. D., & Montilla, A. M. (2019, April). Bambusa blumeana fiber as erosion control geotextile on steep slopes. In IOP Conference Series: Materials Science and Engineering (Vol. 513, No. 1, p. 012030). IOP Publishing.
  • Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., & Bergado, D. T. (2010). Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers, 82(4), 1090-1096.
  • Li, Q., & Lu, Y. (2023). Experimental study on static stability of tailings dam with geotextile tubes. In Advances in Civil Engineering: Structural Seismic Resistance, Monitoring and Detection (pp. 112-116). CRC Press.
  • ISO I. 10534-2. (2001). Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method. BS EN ISO, 10534-2.
  • ASTM S (1990). Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. C423-90a.
  • Asdrubali, F., D'Alessandro, F., Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17.
  • ASTM C.518 (2017). Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. Annual book of ASTM standards.
  • ISO E. 6946. (2017). Building components and building elements—Thermal resistance and thermal transmittance—Calculation methods. International Organization for Standardization: Geneva, Switzerland.
  • TS EN 12390-3. (2010). Beton- Sertleşmiş beton deneyleri- Bölüm 3: Deney numunelerinin basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-5. (2010). Beton - Sertleşmiş beton deneyleri - Bölüm 5: Deney numunelerinin eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • Mechtcherine, V. & Lieboldt, M. (2011). Permeation of water and gases through cracked textile reinforced concrete. Cement and Concrete Composites, 33(7), 725-734.
  • ISO I.834. (1999). Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland.
  • Credence Research, (2018). Global technical textiles market size, segmentation, opportuni-ties, trends, growth and industry forecast to 2022. www.credenceresearch.com/report/technical-textiles-market

Bina ve İnşaat Teknik Tekstillerinde Güncel Uygulamalar

Year 2023, Volume: 10 Issue: 2, 456 - 464, 30.11.2023
https://doi.org/10.35193/bseufbd.1249473

Abstract

Tekstil endüstrisinin gelişme gösteren kollarından biri teknik tekstil ürünleridir. Teknik tekstiller arasında yer alan bina ve inşaat teknik tekstilleri yapı endüstrisinde yaygın olarak kullanılmaktadır. Bina ve inşaat teknik tekstillerinin çevre dostu, hafif, yüksek performanslı ve sürdürülebilir çözümler sunması, bu malzemelerin kullanımını gün geçtikçe arttırmaktadır. Bu derleme çalışması ile bina ve inşaat teknik tekstilleri (buildtech) alt başlıklar halinde incelenmiş bu alanda son yıllarda yapılan çalışmalar irdelenmiştir. Artan çevresel ve ekolojik kaygılar ile birlikte bina ve inşaat teknik tekstilinde de sürdürülebilir ve yenilikçi uygulamalar ön plana çıkmış ve bu derleme çalışma içerisinde bu konu ele alınmıştır. Bu kapsamda elde edilen sonuçlara göre; bina ve inşaat teknik tekstillerinin sağladığı üstün özellikler sayesinde yapı ve inşaat sektöründe kullanımlarının giderek artacağı öngörülmektedir.

References

  • Baier, B. (2010). Technical characteristics and requirements of textiles used for building and construction, Textiles, Polymers and Composites for Buildings University of Duisburg-Essen, Germany, Woodhead Publishing Limited, 49-67.
  • Tabor, J. & Tushar, G. (2019). Building and Construction Textiles. High Perform. Tech. Text.
  • Ecer, K., Güner, O., & Çetin, M. (2021). Avrupa yeşil mutabakatı ve Türkiye ekonomisinin uyum politikaları. İşletme ve iktisat çalışmaları dergisi, 9(2), 125-144.
  • Krishna, P. (2020). An Engineer—Academic Looks Back. In The Mind of an Engineer: Volume 2 239-245 Springer, Singapore.
  • Hu, J., Chen, W., Yang, D., Zhao, B., Song, H. & Ge, B. (2019). Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days. Applied energy, 173, 40-51.
  • Paech, C. (2016). Structural membranes used in modern building facades. Procedia Engineering, 155, 61-70.
  • São João, L., Carvalho, R. & Fangueiro, R. (2016). A study on the durability properties of textile membranes for architectural purposes. Procedia Engineering, 155, 230-237.
  • Shi, T., Hu, J., Chen, W. & Gao, C. (2020). Biaxial tensile behavior and strength of architectural fabric membranes. Polymer Testing, 82, 106230.
  • Tang, X., Rosseler, O., Chen, S., de l’Aulnoit, S. H., Lussier, M. J., Zhang, J. & Destaillats, H. (2021). Self-cleaning and de-pollution efficacies of photocatalytic architectural membranes. Applied Catalysis B: Environmental, 281, 119260.
  • Hu, J., Chen, W., Qu, Y. & Yang, D. (2020). Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance. Engineering Structures, 210, 110292.
  • Sheth, P. J., U.S. (1990). Patent No. 4,929,303Washington, DC: U.S. Patent and Trademark Office.
  • Patnaik, A. (2016). Materials used for acoustic textiles. In Acoustic Textiles . 73-92. Springer, Singapore.
  • Koizumi, T., Tsujiuchi, N., Adachi, A. (2002). The development of sound absorbing materials using natural bamboo fibers. WIT Transactions on the Built Environment, 59, 157-166.
  • Islam, S. & Bhat, G. (2019). Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. Journal of environmental management, 251, 109536.
  • Gürani Y. & Doba Kadem F. (2018). Tekstil yüzeylerinin iç mekân tasarımında akustik olarak kullanımı. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi 5(6), 48-55.
  • Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A. & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169.
  • Woo, S. S., Shalev, I. & Barker, R. L. (1994). Heat and moisture transfer through nonwoven fabrics: Part I: Heat transfer. Textile Research Journal, 64(3), 149-162.
  • Briga-Sa, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H. & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155-160.
  • Hadded, A., Benltoufa, S., Fayala, F. & Jemni, A. (2016). Thermo physical characterisation of recycled textile materials used for building insulating. Journal of building engineering, 5, 34-40.
  • Dissanayake, D. G. K., Weerasinghe, D. U., Wijesinghe, K. A. P. & Kalpage, K. M. D. M. P. (2018). Developing a compression moulded thermal insulation panel using postindustrial textile waste. Waste Management, 79, 356-361.
  • El Wazna, M., El Fatihi, M., El Bouari, A. & Cherkaoui, O. (2017). Thermo physical characterization of sustainable insulation materials made from textile waste. Journal of Building Engineering, 12, 196-201.
  • Wazna, M. E., Gounni, A., Bouari, A. E., Alami, M. E. & Cherkaoui, O. (2019). Development, characterization and thermal performance of insulating nonwoven fabrics made from textile waste. Journal of Industrial Textiles, 48(7), 1167-1183.
  • Gounni, A., Mabrouk, M. T., El Wazna, M., Kheiri, A., El Alami, M., El Bouari, A., Cherkaoui, O. (2019). Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Applied Thermal Engineering, 149, 475-483.
  • Trajković, D., Jordeva, S., Tomovska, E. & Zafirova, K. (2017). Polyester apparel cutting waste as insulation material. The Journal of The Textile Institute, 108(7), 1238-1245.
  • Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite eco-friendly sound absorbing materials made of recycled textile waste and biopolymers. Materials, 12(23), 4020.
  • Dissanayake, D. G. K., Weerasinghe, D. U., Thebuwanage, L. M. & Bandara, U. A. A. N. (2021). An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber. Journal of Building Engineering, 33, 101606.
  • Siddika, A., Al Mamun, M. A., Ferdous, W. & Alyousef, R. (2020). Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs–A state-of-the-art review. Engineering Failure Analysis, 111, 104480.
  • Wu, H., Lin, X. & Zhou, A. (2020). A review of mechanical properties of fibre reinforced concrete at elevated temperatures. Cement and Concrete Research, 135, 106117.
  • Mehta, P. K. & Monteiro, P. J. (2014). Concrete: microstructure, properties and materials. McGraw-Hill Education.
  • Kızılkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S., Akça, A. H. (2015). Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials, 100, 218-224.
  • Sim, J. & Park, C. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6-7), 504-512.
  • Mohod, M. V. (2015). Performance of polypropylene fibre reinforced concrete. IOSR Journal of Mechanical and Civil Engineering, 12(1), 28-36.
  • Qin, Y., Zhang, X., Chai, J., Xu, Z. & Li, S. (2019). Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Construction and Building Materials, 194, 216-225.
  • Chen, X., Zhuge, Y., Al-Gemeel, A. N. & Xiong, Z. (2021). Compressive behaviour of concrete column confined with basalt textile reinforced ECC. Engineering Structures, 243, 112651.
  • Meggers, F., Leibundgut, H., Kennedy, S., Qin, M., Schlaich, M., Sobek, W. & Shukuya, M. (2012). Reduce CO2 from buildings with technology to zero emissions. Sustainable Cities and Society, 2(1), 29-36.
  • Zhu, H., Liang, G., Zhang, Z., Wu, Q. & Du, J. (2019). Partial replacement of metakaolin with thermally treated rice husk ash in metakaolin-based geopolymer. Construction and Building Materials, 221, 527-538.
  • Darsanasiri, A. G. N. D., Matalkah, F., Ramli, S., Al-Jalode, K., Balachandra, A. & Soroushian, P. (2018). Ternary alkali aluminosilicate cement based on rice husk ash, slag and coal fly ash. Journal of Building Engineering, 19, 36-41.
  • Yıldız, S., Balaydın, İ. & Ulucan, Z. Ç. (2007). Pirinç kabuğu külünün beton dayanımına etkisi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19(1), 85-91.
  • Hwang, C. L. & Wu, D. S. (1989). Properties of cement paste containing rice husk ash. Special Publication, 114, 733-762.
  • Attmann, O. (2010). Green architecture: advanced technologies and materials. McGraw-Hill Education.
  • Arslan, M. A. & Aktaş, M. (2018). İnşaat Sektöründe Kullanılan Yalıtım Malzemelerinin Isı ve Ses Yalıtımı Açısından Değerlendirilmesi. Politeknik Dergisi, 21(2), 299-320.
  • Muthuraj, R., Lacoste, C., Lacroix, P. & Bergeret, A. (2019). Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products, 135, 238-245.
  • Antolinc, D., & Filipič, K. E. (2021). Recycling of nonwoven polyethylene terephthalate textile into thermal and acoustic insulation for more sustainable buildings. Polymers, 13(18), 3090.
  • Jaskuła, P., Stienss, M., & Szydłowski, C. (2017). Effect of polymer fibres reinforcement on selected properties of asphalt mixtures. Procedia Engineering, 172, 441-448.
  • Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials, 35, 710-717.
  • Horrocks, A. R. & Anand, S. C. (Eds.), “Handbook of technical textiles”, Elsevier, (2000).
  • Zaman, M. W., Han, J., & Zhang, X. (2022). Evaluating wettability of geotextiles with contact angles. Geotextiles and Geomembranes, 50(4), 825-833.
  • Wu, H., Yao, C., Li, C., Miao, M., Zhong, Y., Lu, Y. & Liu, T, (2020). Review of application and innovation of geotextiles in geotechnical engineering, Materials, 13(7), 1774.
  • Wiewel, B. V., & Lamoree, M. (2016). Geotextile composition, application and ecotoxicology—A review. Journal of Hazardous Materials, 317, 640-655.
  • Valle, S. B., Albay, R. D., & Montilla, A. M. (2019, April). Bambusa blumeana fiber as erosion control geotextile on steep slopes. In IOP Conference Series: Materials Science and Engineering (Vol. 513, No. 1, p. 012030). IOP Publishing.
  • Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., & Bergado, D. T. (2010). Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers, 82(4), 1090-1096.
  • Li, Q., & Lu, Y. (2023). Experimental study on static stability of tailings dam with geotextile tubes. In Advances in Civil Engineering: Structural Seismic Resistance, Monitoring and Detection (pp. 112-116). CRC Press.
  • ISO I. 10534-2. (2001). Acoustics-Determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method. BS EN ISO, 10534-2.
  • ASTM S (1990). Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. C423-90a.
  • Asdrubali, F., D'Alessandro, F., Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17.
  • ASTM C.518 (2017). Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. Annual book of ASTM standards.
  • ISO E. 6946. (2017). Building components and building elements—Thermal resistance and thermal transmittance—Calculation methods. International Organization for Standardization: Geneva, Switzerland.
  • TS EN 12390-3. (2010). Beton- Sertleşmiş beton deneyleri- Bölüm 3: Deney numunelerinin basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-5. (2010). Beton - Sertleşmiş beton deneyleri - Bölüm 5: Deney numunelerinin eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • Mechtcherine, V. & Lieboldt, M. (2011). Permeation of water and gases through cracked textile reinforced concrete. Cement and Concrete Composites, 33(7), 725-734.
  • ISO I.834. (1999). Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland.
  • Credence Research, (2018). Global technical textiles market size, segmentation, opportuni-ties, trends, growth and industry forecast to 2022. www.credenceresearch.com/report/technical-textiles-market
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Semiha Eren 0000-0002-2326-686X

Aliye Akarsu Özenç 0000-0001-5603-5913

Publication Date November 30, 2023
Submission Date February 9, 2023
Acceptance Date May 30, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

APA Eren, S., & Akarsu Özenç, A. (2023). Bina ve İnşaat Teknik Tekstillerinde Güncel Uygulamalar. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(2), 456-464. https://doi.org/10.35193/bseufbd.1249473