Research Article
BibTex RIS Cite

Bir Havacılık Elastoplastik Yapısal Delikli Silindirik Bileşenin Döngüsel Mekanik Yük Altında COMSOL Multiphysics ve Taguchi Metodu Optimizasyonu ile Yorulma Analizi

Year 2023, Volume: 6 Issue: 2, 151 - 171, 31.12.2023
https://doi.org/10.55117/bufbd.1303228

Abstract

Bu araştırma çalışması, döngüsel mekanik yüklere maruz kalan bir deliği olan havacılık elastoplastik silindirik yapısal bileşenin yorulma davranışına odaklanmaktadır. Havacılık uygulamalarının zorlu çalışma ortamında, yapısal bileşenler, özellikle delikler gibi gerilim yoğunlaştırıcılara sahip olanlar, döngüsel yükleme koşullarına maruz kalırlar ve bu da zamanla yorulma arızasına yol açar. Bu çalışmanın temel amacı, bu yorulma davranışı hakkında bilgi edinmek ve bu bileşenlerin yorulma performansını artırabilecek optimize edilmiş bir tasarım ve işletim parametreleri seti geliştirmektir. COMSOL Multiphysics'in sağlam sonlu eleman analiz yeteneklerinden yararlanılarak, elastoplastik silindirik bileşenin kapsamlı bir modeli geliştirildi. Model, çeşitli döngüsel mekanik yükleme koşulları altında yorulma performansı üzerindeki tipik bir gerilim artırıcı olan deliğin karmaşık etkilerini yakalar. Daha sonra, bu model kullanılarak, bileşenin yorulma ömrü ve arıza modellerine ilişkin değerli bilgiler sağlayan ayrıntılı bir yorulma analizi gerçekleştirilir. Yorulma performansını artırmak için istatistiksel bir yaklaşım olan Taguchi yöntemi kullanılır. Bu yöntem, yorulma ömrünü etkileyen temel tasarım ve işletim parametrelerinin belirlenmesine ve optimize edilmesine yardımcı olur. Parametreler, yorulma ömrünü en üst düzeye çıkarmak ve operasyonel döngüsel yükler altında bileşenin yapısal bütünlüğünü sağlamak amacıyla sinyal-gürültü oranlarına göre optimize edilmiştir. Bu araştırmanın bulguları, gelişmiş güvenlik, artırılmış dayanıklılık ve azaltılmış bakım gereksinimleri gibi potansiyel faydalarla birlikte, havacılık yapısal bileşenlerinin tasarımı ve üretimi için önemli çıkarımlara sahiptir. Ancak, sonuçların uygulanabilirliği, gerçek dünya işletim koşullarının karmaşıklığı ve simülasyon modelinde yapılan varsayımlar ile sınırlı olabilir. Gelecekteki çalışmalar, daha karmaşık yükleme senaryoları ve gerçek dünya vaka incelemelerini birleştirerek bu sonuçları doğrulayabilir ve geliştirebilir.

References

  • [1] P. Foti, et al., "Multiaxial fatigue of additively manufactured metallic components: A review of the failure mechanisms and fatigue life prediction methodologies," Progress in Materials Science, pp. 101126, 2023.
  • [2] S. Lee and Y. Kang, "Fatigue Life Prediction of Structural Components in Aerospace Engineering: A Review," Int. J. Precision Eng. Manuf.-Green Technol., vol. 5, no. 4, pp. 525-539, 2018.
  • [3] P. Yadegari, et al., "Extension of methods for estimating the fatigue strength of components made of ultra-high strength steels," International Journal of Fatigue, vol. 167, p. 107325, 2023.
  • [4] H. Tebassi, M. A. Yallese, and S. Belhadi, "Optimization and Machinability Assessment at the Optimal Solutions Across Taguchi OA, GRA, and BBD: An Overall View," Arabian Journal for Science and Engineering, pp. 1-29, 2023.
  • [5] Z. Wu, et al., "Tensile and fatigue behaviors of hybrid laser welded A7N01 alloy with repairing for railway vehicles," Engineering Failure Analysis, vol. 143, p. 106930, 2023.
  • [6] S. K. Bhaumik, M. Sujata, and M. A. Venkataswamy, "Fatigue failure of aircraft components," Engineering Failure Analysis, vol. 15, no. 6, pp. 675-694, 2008.
  • [7] D. C. Van Aswegen and C. Polese, "Experimental and analytical investigation of the effects of laser shock peening processing strategy on fatigue crack growth in thin 2024 aluminium alloy panels," International Journal of Fatigue, vol. 142, p. 105969, 2021.
  • [8] S. Sieberer, E. G. Viehböck, and M. Schagerl, "Optical stress concentration and stress gradient monitoring during elasto-plastic fatigue tests with Digital Image Correlation," Materials Today: Proceedings, vol. 62, pp. 2543-2548, 2022.
  • [9] P. M. George, N. Pillai, and N. Shah, "Optimization of shot peening parameters using Taguchi technique," Journal of Materials Processing Technology, vol. 153, pp. 925-930, 2004.
  • [10] W. Joint, "Finite element analysis of aircraft wing joint and fatigue life prediction under variable loading using MSC Patran and Nastran," Technology, vol. 9, no. 11, pp. 1111-1119, 2018.
  • [11] S. D. Daxini and J. M. Prajapati, "A review on recent contribution of meshfree methods to structure and fracture mechanics applications," The Scientific World Journal, vol. 2014, 2014.
  • [12] A. Khosravifard, et al., "Accurate and efficient analysis of stationary and propagating crack problems by meshless methods," Theoretical and Applied Fracture Mechanics, vol. 87, pp. 21-34, 2017.
  • [13] S. Kumar, I. V. Singh, and B. K. Mishra, "A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials," Theoretical and Applied Fracture Mechanics, vol. 72, pp. 121-135, 2014.
  • [14] J. de Jesus, J. A. Martins Ferreira, L. Borrego, J. D. Costa, and C. Capela, “Fatigue Failure from Inner Surfaces of Additive Manufactured Ti-6Al-4V Components,” Materials, vol. 14, no. 4, p. 737, Feb. 2021, doi: 10.3390/ma14040737.
  • [15] E. Pessard, et al., "High-cycle fatigue behavior of a laser powder bed fusion additive manufactured Ti-6Al-4V titanium: Effect of pores and tested volume size," International Journal of Fatigue, vol. 149, p. 106206, 2021.
  • [16] X. Zhang, et al., "Ultra-High-Cycle Fatigue Life Prediction of Metallic Materials Based on Machine Learning," Applied Sciences, vol. 13, no. 4, pp. 2524, 2023.
  • [17] T. Sun, et al., "An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain," Materials, vol. 15, no. 9, pp. 3403, 2022.
  • [18] W.-H. Chen, et al., "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, vol. 169, p. 112917, 2022.
  • [19] A. A. Shanyavsky, "Scales of metal fatigue cracking," Physical Mesomechanics, vol. 18, no. 2, pp. 163-173, 2015.
  • [20] Q. Wang, M. K. Khan, and C. Bathias, "Current understanding of ultra-high cycle fatigue," Theoretical and Applied Mechanics Letters, vol. 2, no. 3, pp. 031002, 2012.
  • [21] M. Amiri and M. R. Shabgard, "Fatigue Life Prediction of Aerospace Structures: A Review," J. Failure Anal. Prev., vol. 17, no. 6, pp. 1412-1435, 2017.
  • [22] F. Ellyin and M. W. Mattingly, "Modified Smith-Watson-Topper constitutive equations for fatigue damage," Int. J. Fatigue, vol. 18, no. 5, pp. 339-347, 1996.
  • [23] Z. Zhang and K. Xia, "A modified SWT model based on a new characteristic length parameter," Fatigue Fract. Eng. Mater. Struct., vol. 35, no. 6, pp. 521-533, 2012.
  • [24] M. Flaschel, "Automated Discovery of Material Models in Continuum Solid Mechanics," PhD dissertation, ETH Zurich, 2023.
  • [25] L. Zhang, et al., "Micromechanical modeling and experimental characterization for the elastoplastic behavior of a functionally graded material," International Journal of Solids and Structures, vol. 206, pp. 370-382, 2020.
  • [26] K. M. Hayatleh and M. Al-Saadi, "Fatigue Analysis and Life Prediction of Aerospace Structures: A Comprehensive Review," J. Aerospace Eng., vol. 33, no. 1, paper no. 04019132, 2020.
  • [27] A. Abusoglu, E. Demir, and R. Basar, "Fatigue Life Prediction of Aerospace Structures with Holes Using Finite Element Analysis: A Review," Int. J. Fatigue, vol. 151, paper no. 106176, 2021.
  • [28] J. K. Suh and D. G. Lee, "Fatigue Analysis of Aerospace Structures: A Comprehensive Review," J. Korean Soc. Aeronaut. Space Sci., vol. 47, no. 2, pp. 115-131, 2019.
  • [29] G. Taguchi and Y. Wu, "Introduction to Taguchi Method Optimization for Robustness and Quality," CRC Press, 2012.
  • [30] F. Gu, P. Hall, N. J. Miles, Q. Ding, and T. Wu, "Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the Taguchi method and principal component analysis," Mater Des, vol. 62, pp. 189-198, 2014.
  • [31] Y. Wu and A. Wu, "Taguchi methods for robust design," The American Society of Mechanical Engineers, New York, 2000.
  • [32] S. K. Jena, et al., "Fatigue experiments and life predictions of notched C-Mn steel tubes," International Journal of Fatigue, pp. 107502, 2023.
  • [33] Y. Zhou and P. K. Mallick, "Fatigue performance of an injection‐molded short E‐glass fiber‐reinforced polyamide 6, 6. I. Effects of orientation, holes, and weld line," Polymer Composites, vol. 27, no. 2, pp. 230-237, 2006.
  • [34] C. Wu, et al., "Experimental study on the static and fatigue performances of GFRP-timber bolted connections," Composite Structures, vol. 304, p. 116435, 2023.
  • [35] B. Wang, et al., "Effects of tool angles and uncut chip thickness on consumption of plastic deformation energy during machining process," Journal of Manufacturing Processes, vol. 87, pp. 123-132, 2023.
  • [36] X. Pan, et al., "Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening," International Journal of Machine Tools and Manufacture, vol. 184, p. 103979, 2023.
  • [37] C. Sun, et al., "Nanograin formation and cracking mechanism in Ti alloys under very high cycle fatigue loading," International Journal of Fatigue, vol. 167, p. 107331, 2023.
  • [38] J. Liang, et al., "Cyclic stress–strain response and crystal plasticity finite element analysis of AISI 9310 steel in biaxial fatigue loading," Fatigue & Fracture of Engineering Materials & Structures, 2023.
  • [39] X. Shi, et al., "Cyclic load tests and finite element modelling of self-centering hollow-core FRP-concrete-steel bridge columns," Alexandria Engineering Journal, vol. 70, pp. 301-314, 2023.
  • [40] Y. Wu and A. Wu, "Taguchi methods for robust design," The American Society of Mechanical Engineers, New York, 2000.
  • [41] F. Gu, "Investigation on the use of recycled plastics in the production of automobile parts," PhD dissertation, University of Nottingham, 2015.
  • [42] G. Oh, "Notch fatigue fracture and crack growth behaviors on a steel sheet under out-of-plane bending," Engineering Fracture Mechanics, pp. 109062, 2023.
  • [43] W. Macek, et al., "Effect of bending-torsion on fracture and fatigue life for 18Ni300 steel specimens produced by SLM," Mechanics of Materials, vol. 178, p. 104576, 2023.
  • [44] K. N. Smith, P. Watson, and T. H. Topper, "A stress-strain function for the fatigue of metals," J. Mater., vol. 5, no. 4, pp. 767-778, 1970.

Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization

Year 2023, Volume: 6 Issue: 2, 151 - 171, 31.12.2023
https://doi.org/10.55117/bufbd.1303228

Abstract

This research study focuses on the fatigue behavior of an aerospace elastoplastic cylindrical structural component with a hole subjected to cyclic mechanical loads. In the demanding operational environment of aerospace applications, the structural components, particularly those with stress concentrators like holes, experience cyclic loading conditions, leading to fatigue failure over time. The key objective of this study is to gain insights into this fatigue behavior, and to develop an optimized set of design and operational parameters that can enhance the fatigue performance of these components. Utilizing the robust finite element analysis capabilities of COMSOL Multiphysics, a comprehensive model of the elastoplastic cylindrical component is developed. The model captures the intricate effects of the hole, a typical stress raiser, on the fatigue performance under various cyclic mechanical loading conditions. A detailed fatigue analysis is then performed using this model, providing valuable insights into the fatigue life and failure patterns of the component. To enhance the fatigue performance, the Taguchi method, a statistical approach, is employed. This method helps to identify and optimize the key design and operational parameters influencing the fatigue life. The parameters are optimized based on their signal-to-noise ratio, with an aim to maximize the fatigue life and ensure the structural integrity of the component under operational cyclic loads. The findings of this research hold significant implications for the design and manufacturing of aerospace structural components, with potential benefits of improved safety, enhanced durability, and reduced maintenance requirements. However, the results' applicability might be limited by the complexity of real-world operational conditions and the assumptions made in the simulation model. Future studies can validate and enhance these results by incorporating more complex loading scenarios and real-world case studies.

References

  • [1] P. Foti, et al., "Multiaxial fatigue of additively manufactured metallic components: A review of the failure mechanisms and fatigue life prediction methodologies," Progress in Materials Science, pp. 101126, 2023.
  • [2] S. Lee and Y. Kang, "Fatigue Life Prediction of Structural Components in Aerospace Engineering: A Review," Int. J. Precision Eng. Manuf.-Green Technol., vol. 5, no. 4, pp. 525-539, 2018.
  • [3] P. Yadegari, et al., "Extension of methods for estimating the fatigue strength of components made of ultra-high strength steels," International Journal of Fatigue, vol. 167, p. 107325, 2023.
  • [4] H. Tebassi, M. A. Yallese, and S. Belhadi, "Optimization and Machinability Assessment at the Optimal Solutions Across Taguchi OA, GRA, and BBD: An Overall View," Arabian Journal for Science and Engineering, pp. 1-29, 2023.
  • [5] Z. Wu, et al., "Tensile and fatigue behaviors of hybrid laser welded A7N01 alloy with repairing for railway vehicles," Engineering Failure Analysis, vol. 143, p. 106930, 2023.
  • [6] S. K. Bhaumik, M. Sujata, and M. A. Venkataswamy, "Fatigue failure of aircraft components," Engineering Failure Analysis, vol. 15, no. 6, pp. 675-694, 2008.
  • [7] D. C. Van Aswegen and C. Polese, "Experimental and analytical investigation of the effects of laser shock peening processing strategy on fatigue crack growth in thin 2024 aluminium alloy panels," International Journal of Fatigue, vol. 142, p. 105969, 2021.
  • [8] S. Sieberer, E. G. Viehböck, and M. Schagerl, "Optical stress concentration and stress gradient monitoring during elasto-plastic fatigue tests with Digital Image Correlation," Materials Today: Proceedings, vol. 62, pp. 2543-2548, 2022.
  • [9] P. M. George, N. Pillai, and N. Shah, "Optimization of shot peening parameters using Taguchi technique," Journal of Materials Processing Technology, vol. 153, pp. 925-930, 2004.
  • [10] W. Joint, "Finite element analysis of aircraft wing joint and fatigue life prediction under variable loading using MSC Patran and Nastran," Technology, vol. 9, no. 11, pp. 1111-1119, 2018.
  • [11] S. D. Daxini and J. M. Prajapati, "A review on recent contribution of meshfree methods to structure and fracture mechanics applications," The Scientific World Journal, vol. 2014, 2014.
  • [12] A. Khosravifard, et al., "Accurate and efficient analysis of stationary and propagating crack problems by meshless methods," Theoretical and Applied Fracture Mechanics, vol. 87, pp. 21-34, 2017.
  • [13] S. Kumar, I. V. Singh, and B. K. Mishra, "A multigrid coupled (FE-EFG) approach to simulate fatigue crack growth in heterogeneous materials," Theoretical and Applied Fracture Mechanics, vol. 72, pp. 121-135, 2014.
  • [14] J. de Jesus, J. A. Martins Ferreira, L. Borrego, J. D. Costa, and C. Capela, “Fatigue Failure from Inner Surfaces of Additive Manufactured Ti-6Al-4V Components,” Materials, vol. 14, no. 4, p. 737, Feb. 2021, doi: 10.3390/ma14040737.
  • [15] E. Pessard, et al., "High-cycle fatigue behavior of a laser powder bed fusion additive manufactured Ti-6Al-4V titanium: Effect of pores and tested volume size," International Journal of Fatigue, vol. 149, p. 106206, 2021.
  • [16] X. Zhang, et al., "Ultra-High-Cycle Fatigue Life Prediction of Metallic Materials Based on Machine Learning," Applied Sciences, vol. 13, no. 4, pp. 2524, 2023.
  • [17] T. Sun, et al., "An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain," Materials, vol. 15, no. 9, pp. 3403, 2022.
  • [18] W.-H. Chen, et al., "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, vol. 169, p. 112917, 2022.
  • [19] A. A. Shanyavsky, "Scales of metal fatigue cracking," Physical Mesomechanics, vol. 18, no. 2, pp. 163-173, 2015.
  • [20] Q. Wang, M. K. Khan, and C. Bathias, "Current understanding of ultra-high cycle fatigue," Theoretical and Applied Mechanics Letters, vol. 2, no. 3, pp. 031002, 2012.
  • [21] M. Amiri and M. R. Shabgard, "Fatigue Life Prediction of Aerospace Structures: A Review," J. Failure Anal. Prev., vol. 17, no. 6, pp. 1412-1435, 2017.
  • [22] F. Ellyin and M. W. Mattingly, "Modified Smith-Watson-Topper constitutive equations for fatigue damage," Int. J. Fatigue, vol. 18, no. 5, pp. 339-347, 1996.
  • [23] Z. Zhang and K. Xia, "A modified SWT model based on a new characteristic length parameter," Fatigue Fract. Eng. Mater. Struct., vol. 35, no. 6, pp. 521-533, 2012.
  • [24] M. Flaschel, "Automated Discovery of Material Models in Continuum Solid Mechanics," PhD dissertation, ETH Zurich, 2023.
  • [25] L. Zhang, et al., "Micromechanical modeling and experimental characterization for the elastoplastic behavior of a functionally graded material," International Journal of Solids and Structures, vol. 206, pp. 370-382, 2020.
  • [26] K. M. Hayatleh and M. Al-Saadi, "Fatigue Analysis and Life Prediction of Aerospace Structures: A Comprehensive Review," J. Aerospace Eng., vol. 33, no. 1, paper no. 04019132, 2020.
  • [27] A. Abusoglu, E. Demir, and R. Basar, "Fatigue Life Prediction of Aerospace Structures with Holes Using Finite Element Analysis: A Review," Int. J. Fatigue, vol. 151, paper no. 106176, 2021.
  • [28] J. K. Suh and D. G. Lee, "Fatigue Analysis of Aerospace Structures: A Comprehensive Review," J. Korean Soc. Aeronaut. Space Sci., vol. 47, no. 2, pp. 115-131, 2019.
  • [29] G. Taguchi and Y. Wu, "Introduction to Taguchi Method Optimization for Robustness and Quality," CRC Press, 2012.
  • [30] F. Gu, P. Hall, N. J. Miles, Q. Ding, and T. Wu, "Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the Taguchi method and principal component analysis," Mater Des, vol. 62, pp. 189-198, 2014.
  • [31] Y. Wu and A. Wu, "Taguchi methods for robust design," The American Society of Mechanical Engineers, New York, 2000.
  • [32] S. K. Jena, et al., "Fatigue experiments and life predictions of notched C-Mn steel tubes," International Journal of Fatigue, pp. 107502, 2023.
  • [33] Y. Zhou and P. K. Mallick, "Fatigue performance of an injection‐molded short E‐glass fiber‐reinforced polyamide 6, 6. I. Effects of orientation, holes, and weld line," Polymer Composites, vol. 27, no. 2, pp. 230-237, 2006.
  • [34] C. Wu, et al., "Experimental study on the static and fatigue performances of GFRP-timber bolted connections," Composite Structures, vol. 304, p. 116435, 2023.
  • [35] B. Wang, et al., "Effects of tool angles and uncut chip thickness on consumption of plastic deformation energy during machining process," Journal of Manufacturing Processes, vol. 87, pp. 123-132, 2023.
  • [36] X. Pan, et al., "Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening," International Journal of Machine Tools and Manufacture, vol. 184, p. 103979, 2023.
  • [37] C. Sun, et al., "Nanograin formation and cracking mechanism in Ti alloys under very high cycle fatigue loading," International Journal of Fatigue, vol. 167, p. 107331, 2023.
  • [38] J. Liang, et al., "Cyclic stress–strain response and crystal plasticity finite element analysis of AISI 9310 steel in biaxial fatigue loading," Fatigue & Fracture of Engineering Materials & Structures, 2023.
  • [39] X. Shi, et al., "Cyclic load tests and finite element modelling of self-centering hollow-core FRP-concrete-steel bridge columns," Alexandria Engineering Journal, vol. 70, pp. 301-314, 2023.
  • [40] Y. Wu and A. Wu, "Taguchi methods for robust design," The American Society of Mechanical Engineers, New York, 2000.
  • [41] F. Gu, "Investigation on the use of recycled plastics in the production of automobile parts," PhD dissertation, University of Nottingham, 2015.
  • [42] G. Oh, "Notch fatigue fracture and crack growth behaviors on a steel sheet under out-of-plane bending," Engineering Fracture Mechanics, pp. 109062, 2023.
  • [43] W. Macek, et al., "Effect of bending-torsion on fracture and fatigue life for 18Ni300 steel specimens produced by SLM," Mechanics of Materials, vol. 178, p. 104576, 2023.
  • [44] K. N. Smith, P. Watson, and T. H. Topper, "A stress-strain function for the fatigue of metals," J. Mater., vol. 5, no. 4, pp. 767-778, 1970.
There are 44 citations in total.

Details

Primary Language English
Subjects Electrical Engineering, Mechanical Engineering
Journal Section Research Articles
Authors

Erkan Tur 0000-0002-3764-2184

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Tur, E. (2023). Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization. Bayburt Üniversitesi Fen Bilimleri Dergisi, 6(2), 151-171. https://doi.org/10.55117/bufbd.1303228
AMA Tur E. Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization. Bayburt Üniversitesi Fen Bilimleri Dergisi. December 2023;6(2):151-171. doi:10.55117/bufbd.1303228
Chicago Tur, Erkan. “Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component With Hole under Cyclic Mechanical Load Using COMSOL Multiphysics and Taguchi Method Optimization”. Bayburt Üniversitesi Fen Bilimleri Dergisi 6, no. 2 (December 2023): 151-71. https://doi.org/10.55117/bufbd.1303228.
EndNote Tur E (December 1, 2023) Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization. Bayburt Üniversitesi Fen Bilimleri Dergisi 6 2 151–171.
IEEE E. Tur, “Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization”, Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, pp. 151–171, 2023, doi: 10.55117/bufbd.1303228.
ISNAD Tur, Erkan. “Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component With Hole under Cyclic Mechanical Load Using COMSOL Multiphysics and Taguchi Method Optimization”. Bayburt Üniversitesi Fen Bilimleri Dergisi 6/2 (December 2023), 151-171. https://doi.org/10.55117/bufbd.1303228.
JAMA Tur E. Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2023;6:151–171.
MLA Tur, Erkan. “Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component With Hole under Cyclic Mechanical Load Using COMSOL Multiphysics and Taguchi Method Optimization”. Bayburt Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, 2023, pp. 151-7, doi:10.55117/bufbd.1303228.
Vancouver Tur E. Fatigue Analysis of an Aerospace Elastoplastic Structural Cylindrical Component with Hole under Cyclic Mechanical Load using COMSOL Multiphysics and Taguchi Method Optimization. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2023;6(2):151-7.

Indexing