Research Article
BibTex RIS Cite

Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye)

Year 2024, Volume: 173 Issue: 173, 19 - 54, 26.04.2024
https://doi.org/10.19111/bulletinofmre.1198192

Abstract

The Bozburun coalfield hosts a late Miocene 1.1 m thick coal seam. This study aims to determine coal quality, mineralogy, petrography and geochemistry, and controlling factors of elemental enrichments. The coals are generally black and greyish black in colour, and the low part of the seam commonly includes fossil shell remains. The ash yield displays a decreasing trend towards the upper part of the seam; in turn, gross calorific and total C values increase upwards. The total S content being generally higher than 5% (on dry basis), displays an increasing trend towards the upper part. In the entire seam, huminite is the most common maceral group, while inertinite and liptinite display variable proportions. The identified minerals by XRD are mainly quartz, clay minerals, calcite, pyrite, and aragonite (in fossil shell remains-bearing samples), whereas feldspars and marcasite determined in a few samples. Furthermore, in the coal samples, celestine and barite were identified by SEM-EDX. This study indicates that precipitation of celestine and Sr-bearing barite grains during diagenetic stage and Sr-uptake by mollusc within the palaeomire caused Sr enrichment in the entire seam. Overall, the water influx and redox conditions controlled the mineralogical and the elemental compositions of the coal seam.

Ethical Statement

This study is not supported by any external funds. Preliminary results of this study have been presented at the 74th Geological Congress of Turkey (Ankara/ Türkiye). The authors would like to thank Bahadır Madencilik Co. for sampling permission; to Mr. Vakkas KARAOĞLU and Mr. Vedat Gök (Bahadır Madencilik Co.) for their assistance during the field work; Dr. Emine CİCİOĞLU -Sütçü, Mr. Yılmaz BULUT, Mr. Bülent BAŞARA, Mr. Arif TALAY, and Mr. Ufuk KİBAR (MTA) for their help at different stages of the analytical procedures; and Prof. Dr. James HOWER (University of Kentucky, Center for Applied Energy Research) for his comments and suggestions during the manuscript preparation.

Supporting Institution

This study is not supported by any external funds. Preliminary results of this study have been presented at the 74th Geological Congress of Turkey (Ankara/ Türkiye). The authors would like to thank Bahadır Madencilik Co. for sampling permission; to Mr. Vakkas KARAOĞLU and Mr. Vedat Gök (Bahadır Madencilik Co.) for their assistance during the field work; Dr. Emine CİCİOĞLU -Sütçü, Mr. Yılmaz BULUT, Mr. Bülent BAŞARA, Mr. Arif TALAY, and Mr. Ufuk KİBAR (MTA) for their help at different stages of t

Thanks

This study is not supported by any external funds. Preliminary results of this study have been presented at the 74th Geological Congress of Turkey (Ankara/ Türkiye). The authors would like to thank Bahadır Madencilik Co. for sampling permission; to Mr. Vakkas KARAOĞLU and Mr. Vedat Gök (Bahadır Madencilik Co.) for their assistance during the field work; Dr. Emine CİCİOĞLU -Sütçü, Mr. Yılmaz BULUT, Mr. Bülent BAŞARA, Mr. Arif TALAY, and Mr. Ufuk KİBAR (MTA) for their help at different stages of the analytical procedures; and Prof. Dr. James HOWER (University of Kentucky, Center for Applied Energy Research) for his comments and suggestions during the manuscript preparation.

References

  • American Society for Testing and Materials (ASTM) D2797/D2797M. 2019. Standard practice for preparing coal samples for microscopical analysis by reflected light. ASTM International, 5.
  • American Society for Testing and Materials (ASTM) D388- 19a. 2021. Standard classification of coals by rank. ASTM International, 8.
  • Arbuzov, S. I., Volostnov, A. V., Rikhvanov, L. P., Mezhibor,A. M., Ilenok, S. S. 2011. Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). International Journal of Coal Geology 86, 318-328.
  • Baysal, M., Yürüm, A., Yıldız, B., Yürüm, Y. 2016. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. International Journal of Coal Geology 163, 166-176.
  • Bohor, B. F., Triplehorn, D. M. 1993. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. Geological Society of America Special Papers 285, 1-44.
  • Boyd, R. J. 2002. The partitioning behaviour of boron from tourmaline during ashing of coal. International Journal of Coal Geology 53, 43-54.
  • Böning, P., Bard, E. 2009. Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea Sediments. Geochimica et Cosmochimica Acta 73, 6771-6788.
  • Brisset, E., Djamali, M., Bard, E., Borschneck, D., Gandouin, E., Garcia, M., Stevens, L., Tachikawa, K. 2017. Late Holocene hydrology of Lake Maharlou, southwest Iran, inferred from high-resolution sedimentological and geochemical analyses. Journal of Paleolimnology 61, 111-128.
  • Buillit, N., Lallier-Vergès, E., Pradier, B., Nicolas, G. 2002. Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New Mexico, USA). International Journal of Coal Geology 51, 93-110.
  • Büçkün, Z., Inaner, H., Oskay, R. G., Christanis, K. 2015. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW Turkey. Journal of Earth System Science 124, 729-746.
  • Calder, J. H., Gibling, M. R., Mukhopadhyay, P. K. 1991. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Société Géologique de France 162, 283-298.
  • Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., Tao,X. 2015. Applications of micro-Fourier transforminfrared spectroscopy (FTIR) in the geological sciences-a review. International Journal of Molecular Sciences 16, 30223-30250.
  • Crosdale, P. J. 1993. Coal maceral ratios as indicators of environment of deposition: do they work for ombrogenous mires? An example from the Miocene of New Zealand. Organic Geochemistry 20, 797-809.
  • Çelik, Y., Karayiğit, A. I., Oskay, R. G., Kayseri-Özer, M. S., Christanis, K., Hower, J. C., Querol, X. 2021. A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmancık Basin, NW Turkey), with emphasis on syngenetic zeolite formation. International Journal of Coal Geology 237, 103691.
  • Çetinkaya, S., Yürüm, Y. 2000. Oxidative pyrolysis of Turkish lignites in air up to 500°C. Fuel Processing Technology 67, 177-189.
  • Dai, S., Finkelman, R.B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology 186, 155- 164.
  • Dai, S., Ren, D., Chou, C-L., Finkelman, R. B., Seredin, V. V., Zhou, Y. 2012a. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology 94, 3-21.
  • Dai, S., Zou, J., Jiang, Y., Ward, C., Wang, X., Li, T., Xue,W., Liu, S., Tian, H., Sun, X., Zhou, D. 2012b.Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology 94, 250-270.
  • Dai, S., Liu, J., Ward, C. R., Hower, J. C., Xie, P., Jiang, Y., Hood, M. M., O’Keefe, J. M. K., Song, H. 2015a.Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews 71, 318-349.
  • Dai, S., Seredin, V. V., Ward, C. R., Hower, J. C., Xing, Y., Zhang, W., Song, W., Wang, P. 2015b. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita 50, 159-186.
  • Dai, S., Ward, C. R., Graham, I. T., French, D., Hower, J. C., Zhao, L., Wang, X. 2017. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews 175, 44-74.Dai, S., Ji, D., Ward, C. R., French, D., Hower, J. C., Yan, X., Wei, Q. 2018. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology 197, 84-114.
  • Dai, S., Bechtel, A, Eble, C. F., Flores, R. M., French,D., Graham, I. T., Hood, M. M., Hower, J. C., Korasidis, V. A., Moore, T. A., Püttmann, W., Wei, Q. 2020a. Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology 219, 103383.
  • Dai S., Hower, J. C., Finkelman, R. B., Graham, I. T.,French, D., Ward, C. R., Eskenazy, G., Wei, Q., Zhao, L. 2020b. Organic associations of non- mineral elements in coal: A review. International Journal of Coal Geology 218, 103347.
  • Dai S., Finkelman, R. B., French, D., Hower, J. C., Graham,I. T., Zhao, F. 2021. Modes of occurrence of elements in coal: A critical evaluation. Earth- Science Reviews 222, 103815.
  • Dehmer, J. 1995. Petrological and organic geochemical investigation of recent peats with known environments of deposition. International Journal of Coal Geology 28, 111-138.
  • Diessel, C. F. K. 1992. Coal-Bearing Depositional Systems.Springer, 721.
  • Di Giuseppe, P., Agostini, S., Di Vincenzo, G., Manetti, P., Savaşçın, M. Y., Conticelli, S. 2021. From subduction to strike slip-related volcanism: insights from Sr, Nd, and Pb isotopes and geochronology of lavas from Sivas–Malatya region, Central Eastern Anatolia. International Journal of Earth Sciences 110, 849-874.
  • Djowe, A. T., Laminsi, S., Njopwouo, D., Acayanka, E., Gaigneaux, E. M. 2013. Surface modification of smectite clay induced by non-thermal gliding arc plasma at atmospheric pressure. Plasma Chemistry and Plasma Processing 33, 707-723.
  • Du, F., Ning, S., Qiao, J., Tan, F., Zhao, X., Zhang, W., Li, C., Luo, Z., He, X. 2021. Geochemical and Mineralogical Characteristics of the Li-Sr- Enriched Coal in the Wenjiaba Mine, Guizhou, SW China. ACS Omega 6, 8816-8828.
  • Economic Commission for Europe-United Nations (E.C.E.- U.N.). 1998. International classification of in- seam coals. ECE, 41.
  • Ekici, T., Alpaslan, M., Parlak, O., Temel, A. 2007. Geochemistry of the Pliocene basalts erupted along the Malatya-Ovacik fault zone (MOFZ), eastern Anatolia, Turkey: Implications for source characteristics and partial melting processes. Geochemistry 67, 201-212.
  • Eminağaoğlu, M., Oskay, R. G., Karayiğit, A. I. 2022. Evaluation of elemental affinities in coal using agglomerative hierarchical clustering algorithm:A case study in a thick and mineable coal seam (km2) from Soma Basin (W. Turkey). International Journal of Coal Geology 259, 104045.
  • Ercan, T., Asutay, H. J. 1993. Petrology of Neogene– Quaternary volcanics in Malatya-Elazığ-Tunceli- Bingöl-Diyarbakır region. Proceedings of A. Suat Erk Geology Symposium 2-5 September 1991, Ankara, 291–302 (in Turkish with English abstract).
  • Finch, A. A., Allison, N. 2008. Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine 71, 539-552.
  • Finkelman, R. B., Dai, S., French, D. 2019. The importance of minerals in coal as the hosts of chemical elements. International Journal of Coal Geology 212, 103251.
  • Georgakopoulos, A., Iordanidis, A., Kapina, V. 2003. Study of low rank Greek coals using FTIR spectroscopy. Energy Sources 25, 995-1005.
  • Goodarzi, F., Swaine, D. J. 1994. The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chemical Geology 118, 301- 318.
  • Goodarzi, F., Gentzis, T., Hofmeister, H. 2020. Elemental composition of fluvial-lacustrine and lacustrine coal-bearing environments, British Columbia, Canada. Energy and Fuels 34, 16046-16058.
  • Guo, Q., Littke, R., Sun, Y., Zieger, L. 2020. Depositional history of low-mature coals from the Puyang Basin, Yunnan Province, China. International Journal of Coal Geology 221, 103428.
  • Hazra, B., Karacan, C. Ö., Tiwari, D. M., Singh, P. K., Singh,A. K. 2019. Insights from Rock-Eval analysis on the influence of sample weight on hydrocarbon generation from Lower Permian organic matter rich rocks, West Bokaro basin, India. Marine and Petroleum Geology 106, 160-170.
  • Honar, J. S. 2004. A model for the origin of large carbonate- and evaporite-hosted celestine (SrSO4) deposits. Sedimentary Research 74, 168-175.
  • Hood, M. M., Eble, C. F., Hower, J. C., Dai, S. 2020.Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky. International Journal of Coal Science and Technology 7, 633-651.
  • Hower, J. C, Gayer, R. A. 2002. Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. International Journal of Coal Geology 50, 215-245.
  • Hower, J. C., Eble, C. F. 2022. Petrology, palynology, and geochemistry of the Pond Creek coal (Pennsylvanian, Duckmantian), Pike County, Kentucky: Overprints of penecontemporaneous tectonism and peat doming. International Journal of Coal Geology 258, 104027.
  • Hower, J. C., Campbell, J. L. I., Teesdale, W. J., Nejedly, Z., Robertson, J. D. 2008. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. International Journal of Coal Geology 75, 88-92.
  • Hower, J. C, Eble, C. F., O’Keefe, J. M. K., Dai, S., Wang,P., Xie, P., Liu, J., Ward, C. R., French, D. 2015.Petrology, palynology, and geochemistry of Gray Hawk coal (Early Pennsylvanian, Langsettian) in Eastern Kentucky, USA. Minerals 5, 592-622.
  • Hower, J. C., Qian, D., Briot, N. J., Hood, M. M., EbleC. F. 2020. Mineralogy of a rare earth element- rich Manchester coal lithotype, Clay County, Kentucky. International Journal of Coal Geology 220, 103413.
  • Hower, J. C., Eble, C. F., O’Keefe, J. M. K. 2021. Phyteral perspectives: Every maceral tells a story. International Journal of Coal Geology 247, 103849.
  • Hower, J. C, Eble, C. F., Xie, P., Liu, J., Fu, B., Hood M. M. 2022. Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. Applied Geochemistry 136, 105150.
  • International Committee for Coal Petrology (ICCP). 1993. International Handbook of Coal Petrography, Centre National de la Recherche Scientifique, 146.
  • International Committee for Coal Petrology (ICCP). 2001. New inertinite classification (ICCP System 1994). Fuel 80, 459-471.
  • International Standard Organisation (ISO) 11760. 2005. Classification of coals. International Organization for Standardization, 9.
  • Jarvie, D. M., Claxton, B. L., Henk, F., Breyer, J. T. 2001. Oil and shale gas from the Barnett Shale, Fort Worth basin, Texas. AAPG Annual Convention, Denver, Colorado, AAPG Search and Discovery Article.
  • Jiang, J., Zhang, S., Longhurst, P., Yang, W., Zheng, S. 2021. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 255, 119724.
  • Kalaitzidis, S., Bouzinos, A., Papazisimou, S., Christanis, K. 2004. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology 57, 243- 263.
  • Karayiğit, A. İ., Whateley, M. K. G. 1997. The origin and properties of a coal seam associated with continental thin micritic limestones, Selimoglu- Divrigi, Turkey. Geological Society Special Publication 125, 101-114.
  • Karayiğit, A. İ., Gayer, R. A. 2000. Trace elements in a Pliocene-Pleistocene lignite profile from the Afsin-Elbistan field, Eastern Turkey. Energy Sources 22, 13-21.
  • Karayiğit, A. İ., Gayer, R. A., Querol, X., Onacak, T. 2000. Contents of major and trace elements in feed coals from Turkish coal-fired power plants. International Journal of Coal Geology 44, 69-184.
  • Karayiğit, A. İ., Gayer, R. A., Ortac, F. E., Goldsmith, S. 2001. Trace elements in the Lower Pliocene fossiliferous Kangal lignites, Sivas, Turkey. International Journal of Coal Geology 47, 73-89.
  • Karayiğit, A. İ., Oskay, R. G., Tuncer, A., A. Gümüş, B., Şengüler, İ., Yaradılmış, H., Tunoğlu, C. 2016. A multidisciplinary study of the Gölbaşı-Harmanlı coal seam, SE Turkey. International Journal of Coal Geology 167, 31-47.
  • Karayiğit, A. İ., Littke, R., Querol, X., Tim, J., Oskay, R. G., Kimon, C. 2017a. The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. International Journal of Coal Geology 173, 110- 128.
  • Karayiğit, A. İ., Bircan, C., Mastalerz, M., Oskay, R. G., Querol, X., Lieberman, N. R., Türkmen, İ. 2017b. Coal characteristics, elemental composition and modes of occurrence of some elements in the İsaalan coal (Balıkesir, NW Turkey). International Journal of Coal Geology 172, 43-59.
  • Karayiğit, A. İ., Mastalerz, M., Oskay, R. G., Gayer,R. A. 2018. Coal petrography, mineralogy, elemental compositions and palaeoenvironmental interpretation of late Carboniferous coal seams in three wells from the Kozlu coalfield (Zonguldak Basin, NW Turkey). International Journal of Coal Geology 187, 54-70.
  • Karayiğit, A. İ., Oskay, R. G., Gayer, R. A. 2019. Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey). Turkish Journal of Earth Sciences 28, 436-456.
  • Karayiğit, A. İ., Atalay, M., Oskay, R. G., Córdoba, P., Querol, X., Bulut, Y. 2020a. Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. International Journal of Coal Geology 218, 103366.
  • Karayiğit, A. İ., Bircan, C., Oskay, R. G., Türkmen, İ., Querol, X. 2020b. The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balıkesir (Western Turkey). International Journal of Coal Geology 228, 103548.
  • Karayiğit, A. İ., Yerin, Ü. O., Oskay, R. G., Bulut, Y., Córdoba, P. 2021. Enrichment and distribution of elements in the middle Miocene coal seams inthe Orhaneli coalfield (NW Turkey). International Journal of Coal Geology 247, 103854.
  • Kaymakçı, N., İnceöz, M., Ertepınar, P. 2006. 3D- architecture and neogene evolution of the Malatya basin: inferences for the kinematics of the Malatya and Ovacık Fault zones. Turkish Journal of Earth Sciences 15, 123-154.
  • Ketris, M. P., Yudovich Ya. E. 2009. Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology 78, 135- 148.
  • Kocaaslan, A., Ersoy, Y. E. 2018. Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: Evidence for Miocene anorogenic magmas contaminated by continental crust. Lithos 310-311, 392-408.
  • Koç-Taşgın, C. 2011. Seismically-generated hydroplastic deformation structures in the Late Miocene lacustrine deposits of the Malatya Basin, eastern Turkey. Sedimentary Geology 235, 264-276.
  • Kolker, A. 2012. Minor element distribution in iron disulfides in coal: A geochemical review. International Journal of Coal Geology 94, 32-43.
  • Kortenski, J. 1992. Carbonate minerals in Bulgarian coals with different degrees of coalification. International Journal of Coal Geology 20, 225- 242.
  • Kus, J., Dolezych, M., Schneider, W., Hofmann, T., Visiné-Rajczi, E. 2020. Coal petrological and xylotomical characterization of Miocene lignites and in-situ fossil tree stumps and trunks from Lusatia region, Germany: palaeoenvironment and taphonomy assessment. International Journal of Coal Geology 217, 103283.
  • Langston, W. J., Bebianno, M. J., Burt, G. R. 1998. Metal handling strategies in molluscs. Langston, W.J. and Bebianno, M. J. (Ed.). Metal metabolism in aquatic environments. Chapman and Hall. London, 219-283.
  • Liu, J., Dai, S., Hower, J. C., Moore, T. A., Moroeng,O., Nechaev, V. P., Petrenko, T. I., French, D., Graham, I. T., Song, X. 2020. Stable isotopes of organic carbon, palynology, and petrography of a thick low-rank Miocene coal within the Mile Basin, Yunnan Province, China: implications for palaeoclimate and sedimentary conditions. Organic Geochemistry 149, 104103.
  • Mach, K., Sýkorová, I., Konzalová, M., Opluštil, S. 2013. Effect of relative lake-level changes in mire- lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology 105, 120-136.
  • Madejova, J. 2003. FTIR techniques in clay mineral studies.Vibrational Spectroscopy 31, 1-10.
  • Marcano, M. C., Frank, T. D., Mukasa, S. B., Lohmann, K. C., Taviani, M. 2015. Diagenetic incorporation of Sr into aragonitic bivalve shells: implications for chronostratigraphic and palaeoenvironmental interpretations. Depositional Record 1, 38-52
  • Mastalerz, M., Hower, J. C., Taulbee, D. N. 2013. Variations in chemistry of macerals as reflected by micro- scale analysis of a Spanish coal. Geologica Acta 11, 483-493.
  • Medunić, G., Grigore, M., Dai, S., Berti, D., Hochella, M. F., Mastalerz, M., Valentim, B., Guedes, A., Hower, J. C. 2020. Characterization of superhigh- organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology 217, 103344.
  • Moore, T. A., Shearer, J. C. 2003. Peat/coal type and depositional environment – are they related? International Journal of Coal Geology 56, 233- 252.
  • Mukhopadhyay, P. 1989. Organic petrography and organic geochemistry of tertiary coals from texas in relation to depositional environment and hydrocarbon generation. Report of Investigations, Bureau of Economic Geology, 118.
  • Nadkarni, R. A. 1980. Multitechnique multielemental analysis of coal and fly ash. Analytical Chemistry 52, 929-935.
  • Naik, A. S., Behera, B., Shukla, U. K., Sahu, H. B., Singh,P. K., Mohanty, D., Sahoo, K., Chatterjee, D. 2021. Mineralogical Studies of Mahanadi Basin coals based on FTIR, XRD and Microscopy: A Geological Perspective. Journal of the Geological Society of India 97, 1019-1027.
  • Nazik, A., Türkmen, I., Koç, C., Aksoy, E., Avşar, N., Yayık,H. 2008. Fresh and brackish water ostracods of Upper Miocene deposits, Arguvan/Malatya (Eastern Anatolia). Turkish Journal of Earth Sciences 17, 481-495.
  • Oikonomopoulos I. K., Perraki, M., Tougiannidis, N., Perraki T., Frey M. J., Antoniadis, P., Ricken, W. 2013. A comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses: An example from the Neogene Greek lignite deposits. International Journal of Coal Geology 115, 1-12.
  • Oikonomopoulos, I. K., Kaouras, G., Tougiannidis, N., Ricken, W., Gurk, M., Antoniadis, P. 2015. The depositional conditionsandthe palaeoenvironment of the Achlada xylite-dominated lignite in western Makedonia, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 777-792.
  • O’Keefe, J. M. K., Bechtel, A., Christanis, K., Dai, S.,DiMichele, W. A., Eble, C. F., Esterle, J. S., Mastalerz, M., Raymond, A. L., Valentim, B. V., Wagner, N. J., Ward, C. R. 2013. On the fundamental difference between coal rank and coal type. International Journal of Coal Geology 118, 58-87.
  • Omodeo-Salé, S., Deschamps, R., Michel, P., Chauveau, B., Suárez-Ruiz, I. 2017. The coal-bearing strata of the lower cretaceous Mannville Group (Western Canadian sedimentary basin, South Central Alberta), part 2: factors controlling the composition of organic matter accumulations. International Journal of Coal Geology 179, 219- 241.
  • Oskay, R. G., Christanis, K., Inaner, H., Salman, M., Taka,M. 2016. Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). International Journal of Coal Geology 163, 100-111.
  • Oskay, R. G., Bechtel, A., Karayiğit, A. İ. 2019. Mineralogy, petrography and organic geochemistry of Miocene coal seams in the Kınık coalfield (Soma Basin-Western Turkey): Insights into depositional environment and palaeovegetation. International Journal of Coal Geology 210, 103205.
  • Önal, M. 1995. Stratigraphy, coal potential and neotectonics of Malatya graben. Süleyman Demirel Üniversitesi, Mühendislik Mimarlık Fakültesi Jeoloji Seksiyonu 8, 159-175 (in Turkish with English abstract).
  • Palmer, C. A., Tuncali, E., Dennen, K. O., Coburn, T. C., Finkelman, R. B. 2004. Characterization of Turkish coals: a nationwide perspective. International Journal of Coal Geology 60, 85-115.
  • Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B. J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., ICCP. 2017. Classification of liptinite-ICCP System 1994. International Journal of Coal Geology169, 40-61.
  • Pollock, S. M., Goodarzi, F., Riediger, C. L. 2000. Mineralogical and elemental variation of coal from Alberta, Canada: an example from the No. 2 seam, Genesee Mine. International Journal of Coal Geology 43, 259-286.
  • Querol, X., Chinenon S., Lopez-Soler A. 1989. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. International Journal of Coal Geology 11, 171-189.
  • Querol, X., Whateley, M. K. G., Fernández-Turiel, J. L., Tuncalı, E. 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology 33, 255-271.
  • Querol, X., Alastuey, A., Plana, F., Lopez-Soler, A., Tuncalı, E., Toprak, S., Ocakoğlu, F., Köker, A. 1999. Coal geology and coal quality of the Miocene Mugla basin, southwestern Anatolia, Turkey. International Journal of Coal Geology 41, 311- 332.
  • Rieder, M., Crelling, J. C., Šustai, O., Drábek M., Weiss, Z., Klementová, M. 2007. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic. International Journal of CoalGeology 71, 115-121.
  • Ruppert, L., Finkelman, R., Boti, E., Milosavljevic, M., Tewalt, S., Simon, N., Dulong, F. 1996. Origin and significance of high nickel and chromium concentrations in pliocene lignite of the Kosovo Basin, Serbia. International Journal of Coal Geology 29, 235-258.
  • Ruppert, L. F., Hower, J. C., Eble, C. F. 2005. Arsenic- bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. International Journal of Coal Geology 63, 27-35.
  • Sançar, T., Zabcı, C., Karabacak, V., Yazıcı, M., Akyüz,H. S. 2019. Geometry and Paleoseismology of the Malatya Fault (Malatya-Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. Journal of Seismology 23, 319-340.
  • Seredin, V. V., Dai, S. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology 94, 67-93.
  • Seyitoğlu, G., Aktuğ, B., Esat, K., Kaypak, B. 2022. Neotectonics of Turkey (Türkiye) and surrounding regions: a new perspective with block modelling. Geologica Acta 20(4), 1-21.
  • Siavalas, G., Linou, M., Chatziapostolou, A., Kalaitzidis, S., Papaefthymiou, H., Christanis, K. 2009. Palaeoenvironment of seam I in the Marathousa lignite mine, Megalopolis basin (southern Greece). International Journal of Coal Geology 78, 233-248.
  • Sümengen, M. 2016. Malatya-K40 sheet. 1:100.000 scaled Series of Geological Maps of Turkey. General Directorate of Mineral Research and Exploration Publication, 29.
  • Spiro, B. F., Liu, J., Dai, S., Zeng, R., Large, D., French,D. 2019. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: elucidation of the India-Eurasia and China- Indochina collisions in Yunnan, China. International Journal of Coal Geology 215, 103304.
  • Stock, A. T., Littke, R., Lücke, A., Zieger, L., Thielemann,T. 2016. Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. International Journal of Coal Geology 157, 2-18.
  • Sütçü, E. C., Karayiğit, A. İ. 2015. Mineral matter, major and trace element content of the Afşin-Elbistan coals, Kahramanmaraş, Turkey. International Journal of Coal Geology 144-145, 111-129.
  • Swaine, D. J. 1990. Trace Elements in Coal. Butterworth,278.
  • Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G. H., Flores, D. 2005. Classification of huminite -ICCP System 1994. International Journal of Coal Geology 62, 85-106.
  • Tekin, E., Varol, B., Ayan, Z., Satır, M. 2002. Epigenetic origin of celestite deposits in the Tertiary Sivas Basin: new mineralogical and geochemical evidence. Neues Jahrbuch für Mineralogie - Monatshefte 7, 289-318.
  • Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., Ayçık, H., Pahin, N. 2002. Chemical and technological properties of Turkish Tertiary coals. General Directorate of Mineral Research and Exploration Publication, 401.
  • Türkmen, İ., Aksoy, E., Koç, C. 2007. Alluvial and lacustrine facies in an extensional basin: Miocene of the Malatya Basin, eastern Turkey. Journal of Asian Earth Sciences 30, 181-198.
  • Türkmen, İ., Koç, C., Aksoy, E., Avşar, N., Dinçer, F. 2004. Stratgraphy and depositional environments of Neogene units in the area of Arguvan-Bozburun (Malatya, E. Turkey). Geosound/Yerbilimleri 44- 45, 57-73 (in Turkish with English abstract).
  • Türkmen, İ., Taşgin, C. K., Avşar, N., Aksoy, E. 2011. Sedimentological characteristics of Alibonca Formation (Upper Oligocene-Lower Miocene) near Arapgir-Yoncalı area (Malatya). Yerbilimleri/ Earth Sciences 32, 235-254 (in Turkish with English abstract).
  • Uysal, I., Zaccarini, F., Garuti, G., Meisel, T., Tarkian, M., Bernhardt, H. J., Sadıklar, M. B. 2007. Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: Their platinum-group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti 32, 151-161.
  • Ward, C. F. 2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology 50, 135-168.
  • Xu, N., Xu, C., Finkelman, R. B., Engle, M. A., Li, Q.,Peng, M., He, L., Huang, B., Yang, Y. 2022. Coal elemental (compositional) data analysis with hierarchical clustering algorithms. International Journal of Coal Geology 249, 103892.
  • Yalçın-Erik, N., Ay, F. 2021. Use of petrological and organic geochemical data in determining hydrocarbon generation potential of coals: miocene coals of Malatya Basin (Eastern Anatolia-Turkey). International Journal of Coal Science and Technology 8, 510-533.
  • Yılmaz, Y. 2019. Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences 56, 1163-1180.
  • Zdravkov, A., Kostova, I., Sachsenhofer, R. F., Korstenski,J. 2006. Reconstruction of paleoenvironment during coal deposition in the Neogene Karlovo graben, Bulgaria. International Journal of Coal Geology 67, 79-94.
Year 2024, Volume: 173 Issue: 173, 19 - 54, 26.04.2024
https://doi.org/10.19111/bulletinofmre.1198192

Abstract

References

  • American Society for Testing and Materials (ASTM) D2797/D2797M. 2019. Standard practice for preparing coal samples for microscopical analysis by reflected light. ASTM International, 5.
  • American Society for Testing and Materials (ASTM) D388- 19a. 2021. Standard classification of coals by rank. ASTM International, 8.
  • Arbuzov, S. I., Volostnov, A. V., Rikhvanov, L. P., Mezhibor,A. M., Ilenok, S. S. 2011. Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). International Journal of Coal Geology 86, 318-328.
  • Baysal, M., Yürüm, A., Yıldız, B., Yürüm, Y. 2016. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. International Journal of Coal Geology 163, 166-176.
  • Bohor, B. F., Triplehorn, D. M. 1993. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. Geological Society of America Special Papers 285, 1-44.
  • Boyd, R. J. 2002. The partitioning behaviour of boron from tourmaline during ashing of coal. International Journal of Coal Geology 53, 43-54.
  • Böning, P., Bard, E. 2009. Millennial/centennial-scale thermocline ventilation changes in the Indian Ocean as reflected by aragonite preservation and geochemical variations in Arabian Sea Sediments. Geochimica et Cosmochimica Acta 73, 6771-6788.
  • Brisset, E., Djamali, M., Bard, E., Borschneck, D., Gandouin, E., Garcia, M., Stevens, L., Tachikawa, K. 2017. Late Holocene hydrology of Lake Maharlou, southwest Iran, inferred from high-resolution sedimentological and geochemical analyses. Journal of Paleolimnology 61, 111-128.
  • Buillit, N., Lallier-Vergès, E., Pradier, B., Nicolas, G. 2002. Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New Mexico, USA). International Journal of Coal Geology 51, 93-110.
  • Büçkün, Z., Inaner, H., Oskay, R. G., Christanis, K. 2015. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW Turkey. Journal of Earth System Science 124, 729-746.
  • Calder, J. H., Gibling, M. R., Mukhopadhyay, P. K. 1991. Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Société Géologique de France 162, 283-298.
  • Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., Tao,X. 2015. Applications of micro-Fourier transforminfrared spectroscopy (FTIR) in the geological sciences-a review. International Journal of Molecular Sciences 16, 30223-30250.
  • Crosdale, P. J. 1993. Coal maceral ratios as indicators of environment of deposition: do they work for ombrogenous mires? An example from the Miocene of New Zealand. Organic Geochemistry 20, 797-809.
  • Çelik, Y., Karayiğit, A. I., Oskay, R. G., Kayseri-Özer, M. S., Christanis, K., Hower, J. C., Querol, X. 2021. A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmancık Basin, NW Turkey), with emphasis on syngenetic zeolite formation. International Journal of Coal Geology 237, 103691.
  • Çetinkaya, S., Yürüm, Y. 2000. Oxidative pyrolysis of Turkish lignites in air up to 500°C. Fuel Processing Technology 67, 177-189.
  • Dai, S., Finkelman, R.B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology 186, 155- 164.
  • Dai, S., Ren, D., Chou, C-L., Finkelman, R. B., Seredin, V. V., Zhou, Y. 2012a. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology 94, 3-21.
  • Dai, S., Zou, J., Jiang, Y., Ward, C., Wang, X., Li, T., Xue,W., Liu, S., Tian, H., Sun, X., Zhou, D. 2012b.Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology 94, 250-270.
  • Dai, S., Liu, J., Ward, C. R., Hower, J. C., Xie, P., Jiang, Y., Hood, M. M., O’Keefe, J. M. K., Song, H. 2015a.Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews 71, 318-349.
  • Dai, S., Seredin, V. V., Ward, C. R., Hower, J. C., Xing, Y., Zhang, W., Song, W., Wang, P. 2015b. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita 50, 159-186.
  • Dai, S., Ward, C. R., Graham, I. T., French, D., Hower, J. C., Zhao, L., Wang, X. 2017. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews 175, 44-74.Dai, S., Ji, D., Ward, C. R., French, D., Hower, J. C., Yan, X., Wei, Q. 2018. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology 197, 84-114.
  • Dai, S., Bechtel, A, Eble, C. F., Flores, R. M., French,D., Graham, I. T., Hood, M. M., Hower, J. C., Korasidis, V. A., Moore, T. A., Püttmann, W., Wei, Q. 2020a. Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology 219, 103383.
  • Dai S., Hower, J. C., Finkelman, R. B., Graham, I. T.,French, D., Ward, C. R., Eskenazy, G., Wei, Q., Zhao, L. 2020b. Organic associations of non- mineral elements in coal: A review. International Journal of Coal Geology 218, 103347.
  • Dai S., Finkelman, R. B., French, D., Hower, J. C., Graham,I. T., Zhao, F. 2021. Modes of occurrence of elements in coal: A critical evaluation. Earth- Science Reviews 222, 103815.
  • Dehmer, J. 1995. Petrological and organic geochemical investigation of recent peats with known environments of deposition. International Journal of Coal Geology 28, 111-138.
  • Diessel, C. F. K. 1992. Coal-Bearing Depositional Systems.Springer, 721.
  • Di Giuseppe, P., Agostini, S., Di Vincenzo, G., Manetti, P., Savaşçın, M. Y., Conticelli, S. 2021. From subduction to strike slip-related volcanism: insights from Sr, Nd, and Pb isotopes and geochronology of lavas from Sivas–Malatya region, Central Eastern Anatolia. International Journal of Earth Sciences 110, 849-874.
  • Djowe, A. T., Laminsi, S., Njopwouo, D., Acayanka, E., Gaigneaux, E. M. 2013. Surface modification of smectite clay induced by non-thermal gliding arc plasma at atmospheric pressure. Plasma Chemistry and Plasma Processing 33, 707-723.
  • Du, F., Ning, S., Qiao, J., Tan, F., Zhao, X., Zhang, W., Li, C., Luo, Z., He, X. 2021. Geochemical and Mineralogical Characteristics of the Li-Sr- Enriched Coal in the Wenjiaba Mine, Guizhou, SW China. ACS Omega 6, 8816-8828.
  • Economic Commission for Europe-United Nations (E.C.E.- U.N.). 1998. International classification of in- seam coals. ECE, 41.
  • Ekici, T., Alpaslan, M., Parlak, O., Temel, A. 2007. Geochemistry of the Pliocene basalts erupted along the Malatya-Ovacik fault zone (MOFZ), eastern Anatolia, Turkey: Implications for source characteristics and partial melting processes. Geochemistry 67, 201-212.
  • Eminağaoğlu, M., Oskay, R. G., Karayiğit, A. I. 2022. Evaluation of elemental affinities in coal using agglomerative hierarchical clustering algorithm:A case study in a thick and mineable coal seam (km2) from Soma Basin (W. Turkey). International Journal of Coal Geology 259, 104045.
  • Ercan, T., Asutay, H. J. 1993. Petrology of Neogene– Quaternary volcanics in Malatya-Elazığ-Tunceli- Bingöl-Diyarbakır region. Proceedings of A. Suat Erk Geology Symposium 2-5 September 1991, Ankara, 291–302 (in Turkish with English abstract).
  • Finch, A. A., Allison, N. 2008. Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine 71, 539-552.
  • Finkelman, R. B., Dai, S., French, D. 2019. The importance of minerals in coal as the hosts of chemical elements. International Journal of Coal Geology 212, 103251.
  • Georgakopoulos, A., Iordanidis, A., Kapina, V. 2003. Study of low rank Greek coals using FTIR spectroscopy. Energy Sources 25, 995-1005.
  • Goodarzi, F., Swaine, D. J. 1994. The influence of geological factors on the concentration of boron in Australian and Canadian coals. Chemical Geology 118, 301- 318.
  • Goodarzi, F., Gentzis, T., Hofmeister, H. 2020. Elemental composition of fluvial-lacustrine and lacustrine coal-bearing environments, British Columbia, Canada. Energy and Fuels 34, 16046-16058.
  • Guo, Q., Littke, R., Sun, Y., Zieger, L. 2020. Depositional history of low-mature coals from the Puyang Basin, Yunnan Province, China. International Journal of Coal Geology 221, 103428.
  • Hazra, B., Karacan, C. Ö., Tiwari, D. M., Singh, P. K., Singh,A. K. 2019. Insights from Rock-Eval analysis on the influence of sample weight on hydrocarbon generation from Lower Permian organic matter rich rocks, West Bokaro basin, India. Marine and Petroleum Geology 106, 160-170.
  • Honar, J. S. 2004. A model for the origin of large carbonate- and evaporite-hosted celestine (SrSO4) deposits. Sedimentary Research 74, 168-175.
  • Hood, M. M., Eble, C. F., Hower, J. C., Dai, S. 2020.Geochemistry, petrology, and palynology of the Princess No. 3 coal, Greenup County, Kentucky. International Journal of Coal Science and Technology 7, 633-651.
  • Hower, J. C, Gayer, R. A. 2002. Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. International Journal of Coal Geology 50, 215-245.
  • Hower, J. C., Eble, C. F. 2022. Petrology, palynology, and geochemistry of the Pond Creek coal (Pennsylvanian, Duckmantian), Pike County, Kentucky: Overprints of penecontemporaneous tectonism and peat doming. International Journal of Coal Geology 258, 104027.
  • Hower, J. C., Campbell, J. L. I., Teesdale, W. J., Nejedly, Z., Robertson, J. D. 2008. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. International Journal of Coal Geology 75, 88-92.
  • Hower, J. C, Eble, C. F., O’Keefe, J. M. K., Dai, S., Wang,P., Xie, P., Liu, J., Ward, C. R., French, D. 2015.Petrology, palynology, and geochemistry of Gray Hawk coal (Early Pennsylvanian, Langsettian) in Eastern Kentucky, USA. Minerals 5, 592-622.
  • Hower, J. C., Qian, D., Briot, N. J., Hood, M. M., EbleC. F. 2020. Mineralogy of a rare earth element- rich Manchester coal lithotype, Clay County, Kentucky. International Journal of Coal Geology 220, 103413.
  • Hower, J. C., Eble, C. F., O’Keefe, J. M. K. 2021. Phyteral perspectives: Every maceral tells a story. International Journal of Coal Geology 247, 103849.
  • Hower, J. C, Eble, C. F., Xie, P., Liu, J., Fu, B., Hood M. M. 2022. Aspects of rare earth element enrichment in Allegheny Plateau coals, Pennsylvania, USA. Applied Geochemistry 136, 105150.
  • International Committee for Coal Petrology (ICCP). 1993. International Handbook of Coal Petrography, Centre National de la Recherche Scientifique, 146.
  • International Committee for Coal Petrology (ICCP). 2001. New inertinite classification (ICCP System 1994). Fuel 80, 459-471.
  • International Standard Organisation (ISO) 11760. 2005. Classification of coals. International Organization for Standardization, 9.
  • Jarvie, D. M., Claxton, B. L., Henk, F., Breyer, J. T. 2001. Oil and shale gas from the Barnett Shale, Fort Worth basin, Texas. AAPG Annual Convention, Denver, Colorado, AAPG Search and Discovery Article.
  • Jiang, J., Zhang, S., Longhurst, P., Yang, W., Zheng, S. 2021. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 255, 119724.
  • Kalaitzidis, S., Bouzinos, A., Papazisimou, S., Christanis, K. 2004. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology 57, 243- 263.
  • Karayiğit, A. İ., Whateley, M. K. G. 1997. The origin and properties of a coal seam associated with continental thin micritic limestones, Selimoglu- Divrigi, Turkey. Geological Society Special Publication 125, 101-114.
  • Karayiğit, A. İ., Gayer, R. A. 2000. Trace elements in a Pliocene-Pleistocene lignite profile from the Afsin-Elbistan field, Eastern Turkey. Energy Sources 22, 13-21.
  • Karayiğit, A. İ., Gayer, R. A., Querol, X., Onacak, T. 2000. Contents of major and trace elements in feed coals from Turkish coal-fired power plants. International Journal of Coal Geology 44, 69-184.
  • Karayiğit, A. İ., Gayer, R. A., Ortac, F. E., Goldsmith, S. 2001. Trace elements in the Lower Pliocene fossiliferous Kangal lignites, Sivas, Turkey. International Journal of Coal Geology 47, 73-89.
  • Karayiğit, A. İ., Oskay, R. G., Tuncer, A., A. Gümüş, B., Şengüler, İ., Yaradılmış, H., Tunoğlu, C. 2016. A multidisciplinary study of the Gölbaşı-Harmanlı coal seam, SE Turkey. International Journal of Coal Geology 167, 31-47.
  • Karayiğit, A. İ., Littke, R., Querol, X., Tim, J., Oskay, R. G., Kimon, C. 2017a. The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. International Journal of Coal Geology 173, 110- 128.
  • Karayiğit, A. İ., Bircan, C., Mastalerz, M., Oskay, R. G., Querol, X., Lieberman, N. R., Türkmen, İ. 2017b. Coal characteristics, elemental composition and modes of occurrence of some elements in the İsaalan coal (Balıkesir, NW Turkey). International Journal of Coal Geology 172, 43-59.
  • Karayiğit, A. İ., Mastalerz, M., Oskay, R. G., Gayer,R. A. 2018. Coal petrography, mineralogy, elemental compositions and palaeoenvironmental interpretation of late Carboniferous coal seams in three wells from the Kozlu coalfield (Zonguldak Basin, NW Turkey). International Journal of Coal Geology 187, 54-70.
  • Karayiğit, A. İ., Oskay, R. G., Gayer, R. A. 2019. Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey). Turkish Journal of Earth Sciences 28, 436-456.
  • Karayiğit, A. İ., Atalay, M., Oskay, R. G., Córdoba, P., Querol, X., Bulut, Y. 2020a. Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. International Journal of Coal Geology 218, 103366.
  • Karayiğit, A. İ., Bircan, C., Oskay, R. G., Türkmen, İ., Querol, X. 2020b. The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balıkesir (Western Turkey). International Journal of Coal Geology 228, 103548.
  • Karayiğit, A. İ., Yerin, Ü. O., Oskay, R. G., Bulut, Y., Córdoba, P. 2021. Enrichment and distribution of elements in the middle Miocene coal seams inthe Orhaneli coalfield (NW Turkey). International Journal of Coal Geology 247, 103854.
  • Kaymakçı, N., İnceöz, M., Ertepınar, P. 2006. 3D- architecture and neogene evolution of the Malatya basin: inferences for the kinematics of the Malatya and Ovacık Fault zones. Turkish Journal of Earth Sciences 15, 123-154.
  • Ketris, M. P., Yudovich Ya. E. 2009. Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology 78, 135- 148.
  • Kocaaslan, A., Ersoy, Y. E. 2018. Petrologic evolution of Miocene-Pliocene mafic volcanism in the Kangal and Gürün basins (Sivas-Malatya), central east Anatolia: Evidence for Miocene anorogenic magmas contaminated by continental crust. Lithos 310-311, 392-408.
  • Koç-Taşgın, C. 2011. Seismically-generated hydroplastic deformation structures in the Late Miocene lacustrine deposits of the Malatya Basin, eastern Turkey. Sedimentary Geology 235, 264-276.
  • Kolker, A. 2012. Minor element distribution in iron disulfides in coal: A geochemical review. International Journal of Coal Geology 94, 32-43.
  • Kortenski, J. 1992. Carbonate minerals in Bulgarian coals with different degrees of coalification. International Journal of Coal Geology 20, 225- 242.
  • Kus, J., Dolezych, M., Schneider, W., Hofmann, T., Visiné-Rajczi, E. 2020. Coal petrological and xylotomical characterization of Miocene lignites and in-situ fossil tree stumps and trunks from Lusatia region, Germany: palaeoenvironment and taphonomy assessment. International Journal of Coal Geology 217, 103283.
  • Langston, W. J., Bebianno, M. J., Burt, G. R. 1998. Metal handling strategies in molluscs. Langston, W.J. and Bebianno, M. J. (Ed.). Metal metabolism in aquatic environments. Chapman and Hall. London, 219-283.
  • Liu, J., Dai, S., Hower, J. C., Moore, T. A., Moroeng,O., Nechaev, V. P., Petrenko, T. I., French, D., Graham, I. T., Song, X. 2020. Stable isotopes of organic carbon, palynology, and petrography of a thick low-rank Miocene coal within the Mile Basin, Yunnan Province, China: implications for palaeoclimate and sedimentary conditions. Organic Geochemistry 149, 104103.
  • Mach, K., Sýkorová, I., Konzalová, M., Opluštil, S. 2013. Effect of relative lake-level changes in mire- lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology 105, 120-136.
  • Madejova, J. 2003. FTIR techniques in clay mineral studies.Vibrational Spectroscopy 31, 1-10.
  • Marcano, M. C., Frank, T. D., Mukasa, S. B., Lohmann, K. C., Taviani, M. 2015. Diagenetic incorporation of Sr into aragonitic bivalve shells: implications for chronostratigraphic and palaeoenvironmental interpretations. Depositional Record 1, 38-52
  • Mastalerz, M., Hower, J. C., Taulbee, D. N. 2013. Variations in chemistry of macerals as reflected by micro- scale analysis of a Spanish coal. Geologica Acta 11, 483-493.
  • Medunić, G., Grigore, M., Dai, S., Berti, D., Hochella, M. F., Mastalerz, M., Valentim, B., Guedes, A., Hower, J. C. 2020. Characterization of superhigh- organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology 217, 103344.
  • Moore, T. A., Shearer, J. C. 2003. Peat/coal type and depositional environment – are they related? International Journal of Coal Geology 56, 233- 252.
  • Mukhopadhyay, P. 1989. Organic petrography and organic geochemistry of tertiary coals from texas in relation to depositional environment and hydrocarbon generation. Report of Investigations, Bureau of Economic Geology, 118.
  • Nadkarni, R. A. 1980. Multitechnique multielemental analysis of coal and fly ash. Analytical Chemistry 52, 929-935.
  • Naik, A. S., Behera, B., Shukla, U. K., Sahu, H. B., Singh,P. K., Mohanty, D., Sahoo, K., Chatterjee, D. 2021. Mineralogical Studies of Mahanadi Basin coals based on FTIR, XRD and Microscopy: A Geological Perspective. Journal of the Geological Society of India 97, 1019-1027.
  • Nazik, A., Türkmen, I., Koç, C., Aksoy, E., Avşar, N., Yayık,H. 2008. Fresh and brackish water ostracods of Upper Miocene deposits, Arguvan/Malatya (Eastern Anatolia). Turkish Journal of Earth Sciences 17, 481-495.
  • Oikonomopoulos I. K., Perraki, M., Tougiannidis, N., Perraki T., Frey M. J., Antoniadis, P., Ricken, W. 2013. A comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses: An example from the Neogene Greek lignite deposits. International Journal of Coal Geology 115, 1-12.
  • Oikonomopoulos, I. K., Kaouras, G., Tougiannidis, N., Ricken, W., Gurk, M., Antoniadis, P. 2015. The depositional conditionsandthe palaeoenvironment of the Achlada xylite-dominated lignite in western Makedonia, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 777-792.
  • O’Keefe, J. M. K., Bechtel, A., Christanis, K., Dai, S.,DiMichele, W. A., Eble, C. F., Esterle, J. S., Mastalerz, M., Raymond, A. L., Valentim, B. V., Wagner, N. J., Ward, C. R. 2013. On the fundamental difference between coal rank and coal type. International Journal of Coal Geology 118, 58-87.
  • Omodeo-Salé, S., Deschamps, R., Michel, P., Chauveau, B., Suárez-Ruiz, I. 2017. The coal-bearing strata of the lower cretaceous Mannville Group (Western Canadian sedimentary basin, South Central Alberta), part 2: factors controlling the composition of organic matter accumulations. International Journal of Coal Geology 179, 219- 241.
  • Oskay, R. G., Christanis, K., Inaner, H., Salman, M., Taka,M. 2016. Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). International Journal of Coal Geology 163, 100-111.
  • Oskay, R. G., Bechtel, A., Karayiğit, A. İ. 2019. Mineralogy, petrography and organic geochemistry of Miocene coal seams in the Kınık coalfield (Soma Basin-Western Turkey): Insights into depositional environment and palaeovegetation. International Journal of Coal Geology 210, 103205.
  • Önal, M. 1995. Stratigraphy, coal potential and neotectonics of Malatya graben. Süleyman Demirel Üniversitesi, Mühendislik Mimarlık Fakültesi Jeoloji Seksiyonu 8, 159-175 (in Turkish with English abstract).
  • Palmer, C. A., Tuncali, E., Dennen, K. O., Coburn, T. C., Finkelman, R. B. 2004. Characterization of Turkish coals: a nationwide perspective. International Journal of Coal Geology 60, 85-115.
  • Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B. J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., ICCP. 2017. Classification of liptinite-ICCP System 1994. International Journal of Coal Geology169, 40-61.
  • Pollock, S. M., Goodarzi, F., Riediger, C. L. 2000. Mineralogical and elemental variation of coal from Alberta, Canada: an example from the No. 2 seam, Genesee Mine. International Journal of Coal Geology 43, 259-286.
  • Querol, X., Chinenon S., Lopez-Soler A. 1989. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. International Journal of Coal Geology 11, 171-189.
  • Querol, X., Whateley, M. K. G., Fernández-Turiel, J. L., Tuncalı, E. 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. International Journal of Coal Geology 33, 255-271.
  • Querol, X., Alastuey, A., Plana, F., Lopez-Soler, A., Tuncalı, E., Toprak, S., Ocakoğlu, F., Köker, A. 1999. Coal geology and coal quality of the Miocene Mugla basin, southwestern Anatolia, Turkey. International Journal of Coal Geology 41, 311- 332.
  • Rieder, M., Crelling, J. C., Šustai, O., Drábek M., Weiss, Z., Klementová, M. 2007. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic. International Journal of CoalGeology 71, 115-121.
  • Ruppert, L., Finkelman, R., Boti, E., Milosavljevic, M., Tewalt, S., Simon, N., Dulong, F. 1996. Origin and significance of high nickel and chromium concentrations in pliocene lignite of the Kosovo Basin, Serbia. International Journal of Coal Geology 29, 235-258.
  • Ruppert, L. F., Hower, J. C., Eble, C. F. 2005. Arsenic- bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. International Journal of Coal Geology 63, 27-35.
  • Sançar, T., Zabcı, C., Karabacak, V., Yazıcı, M., Akyüz,H. S. 2019. Geometry and Paleoseismology of the Malatya Fault (Malatya-Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. Journal of Seismology 23, 319-340.
  • Seredin, V. V., Dai, S. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology 94, 67-93.
  • Seyitoğlu, G., Aktuğ, B., Esat, K., Kaypak, B. 2022. Neotectonics of Turkey (Türkiye) and surrounding regions: a new perspective with block modelling. Geologica Acta 20(4), 1-21.
  • Siavalas, G., Linou, M., Chatziapostolou, A., Kalaitzidis, S., Papaefthymiou, H., Christanis, K. 2009. Palaeoenvironment of seam I in the Marathousa lignite mine, Megalopolis basin (southern Greece). International Journal of Coal Geology 78, 233-248.
  • Sümengen, M. 2016. Malatya-K40 sheet. 1:100.000 scaled Series of Geological Maps of Turkey. General Directorate of Mineral Research and Exploration Publication, 29.
  • Spiro, B. F., Liu, J., Dai, S., Zeng, R., Large, D., French,D. 2019. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: elucidation of the India-Eurasia and China- Indochina collisions in Yunnan, China. International Journal of Coal Geology 215, 103304.
  • Stock, A. T., Littke, R., Lücke, A., Zieger, L., Thielemann,T. 2016. Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. International Journal of Coal Geology 157, 2-18.
  • Sütçü, E. C., Karayiğit, A. İ. 2015. Mineral matter, major and trace element content of the Afşin-Elbistan coals, Kahramanmaraş, Turkey. International Journal of Coal Geology 144-145, 111-129.
  • Swaine, D. J. 1990. Trace Elements in Coal. Butterworth,278.
  • Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G. H., Flores, D. 2005. Classification of huminite -ICCP System 1994. International Journal of Coal Geology 62, 85-106.
  • Tekin, E., Varol, B., Ayan, Z., Satır, M. 2002. Epigenetic origin of celestite deposits in the Tertiary Sivas Basin: new mineralogical and geochemical evidence. Neues Jahrbuch für Mineralogie - Monatshefte 7, 289-318.
  • Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., Ayçık, H., Pahin, N. 2002. Chemical and technological properties of Turkish Tertiary coals. General Directorate of Mineral Research and Exploration Publication, 401.
  • Türkmen, İ., Aksoy, E., Koç, C. 2007. Alluvial and lacustrine facies in an extensional basin: Miocene of the Malatya Basin, eastern Turkey. Journal of Asian Earth Sciences 30, 181-198.
  • Türkmen, İ., Koç, C., Aksoy, E., Avşar, N., Dinçer, F. 2004. Stratgraphy and depositional environments of Neogene units in the area of Arguvan-Bozburun (Malatya, E. Turkey). Geosound/Yerbilimleri 44- 45, 57-73 (in Turkish with English abstract).
  • Türkmen, İ., Taşgin, C. K., Avşar, N., Aksoy, E. 2011. Sedimentological characteristics of Alibonca Formation (Upper Oligocene-Lower Miocene) near Arapgir-Yoncalı area (Malatya). Yerbilimleri/ Earth Sciences 32, 235-254 (in Turkish with English abstract).
  • Uysal, I., Zaccarini, F., Garuti, G., Meisel, T., Tarkian, M., Bernhardt, H. J., Sadıklar, M. B. 2007. Ophiolitic chromitites from the Kahramanmaras area, southeastern Turkey: Their platinum-group elements (PGE) geochemistry, mineralogy and Os-isotope signature. Ofioliti 32, 151-161.
  • Ward, C. F. 2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology 50, 135-168.
  • Xu, N., Xu, C., Finkelman, R. B., Engle, M. A., Li, Q.,Peng, M., He, L., Huang, B., Yang, Y. 2022. Coal elemental (compositional) data analysis with hierarchical clustering algorithms. International Journal of Coal Geology 249, 103892.
  • Yalçın-Erik, N., Ay, F. 2021. Use of petrological and organic geochemical data in determining hydrocarbon generation potential of coals: miocene coals of Malatya Basin (Eastern Anatolia-Turkey). International Journal of Coal Science and Technology 8, 510-533.
  • Yılmaz, Y. 2019. Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences 56, 1163-1180.
  • Zdravkov, A., Kostova, I., Sachsenhofer, R. F., Korstenski,J. 2006. Reconstruction of paleoenvironment during coal deposition in the Neogene Karlovo graben, Bulgaria. International Journal of Coal Geology 67, 79-94.
There are 123 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rıza Görkem Oskay This is me 0000-0003-0748-8363

Ali İhsan Karayiğit This is me 0000-0001-9743-4611

Early Pub Date April 28, 2023
Publication Date April 26, 2024
Published in Issue Year 2024 Volume: 173 Issue: 173

Cite

APA Oskay, R. G., & Karayiğit, A. İ. (2024). Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye). Bulletin of the Mineral Research and Exploration, 173(173), 19-54. https://doi.org/10.19111/bulletinofmre.1198192
AMA Oskay RG, Karayiğit Aİ. Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye). Bull.Min.Res.Exp. April 2024;173(173):19-54. doi:10.19111/bulletinofmre.1198192
Chicago Oskay, Rıza Görkem, and Ali İhsan Karayiğit. “Coal Quality, Mineralogy, Petrography, and Geochemistry of the High-Strontium Bozburun Lignite (Malatya, Eastern Türkiye)”. Bulletin of the Mineral Research and Exploration 173, no. 173 (April 2024): 19-54. https://doi.org/10.19111/bulletinofmre.1198192.
EndNote Oskay RG, Karayiğit Aİ (April 1, 2024) Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye). Bulletin of the Mineral Research and Exploration 173 173 19–54.
IEEE R. G. Oskay and A. İ. Karayiğit, “Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye)”, Bull.Min.Res.Exp., vol. 173, no. 173, pp. 19–54, 2024, doi: 10.19111/bulletinofmre.1198192.
ISNAD Oskay, Rıza Görkem - Karayiğit, Ali İhsan. “Coal Quality, Mineralogy, Petrography, and Geochemistry of the High-Strontium Bozburun Lignite (Malatya, Eastern Türkiye)”. Bulletin of the Mineral Research and Exploration 173/173 (April 2024), 19-54. https://doi.org/10.19111/bulletinofmre.1198192.
JAMA Oskay RG, Karayiğit Aİ. Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye). Bull.Min.Res.Exp. 2024;173:19–54.
MLA Oskay, Rıza Görkem and Ali İhsan Karayiğit. “Coal Quality, Mineralogy, Petrography, and Geochemistry of the High-Strontium Bozburun Lignite (Malatya, Eastern Türkiye)”. Bulletin of the Mineral Research and Exploration, vol. 173, no. 173, 2024, pp. 19-54, doi:10.19111/bulletinofmre.1198192.
Vancouver Oskay RG, Karayiğit Aİ. Coal quality, mineralogy, petrography, and geochemistry of the high-strontium Bozburun lignite (Malatya, eastern Türkiye). Bull.Min.Res.Exp. 2024;173(173):19-54.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en