Research Article
BibTex RIS Cite
Year 2024, Volume: 173 Issue: 173, 235 - 252, 26.04.2024
https://doi.org/10.19111/bulletinofmre.1298494

Abstract

Project Number

Project No: 2022-30- 14-02-2

References

  • Aimaiti, Y., Yamazaki, F., Liu, W., Kasimu, A. 2017. Monitoring of land-surface deformation in the Karamay oilfield, Xinjiang, China, using SAR interferometry. Applied Sciences 7, 8.
  • Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., Laczniak, R. J. 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27, 6, 483–486.
  • Anderssohn, J., Wetzel, H. U., Walter, T. R., Motagh, M., Djamour, Y., Kaufmann, H. 2008. Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: Results from InSAR and leveling. Geophysical Journal International 174, 1, 287–294.
  • Aslan, G., Çakır, Z., Ergintav, S., Lasserre, C., Renard, F. 2018. Analysis of secular ground motions in istanbul from a long-term InSAR time-series (1992-2017). Remote Sensing 10, 3.
  • Aslan, G., Çakir, Z., Lasserre, C., Renard, F. 2019. Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending sentinel-1 satellite data. Remote Sensing 11, 1.
  • Béjar-Pizarro, M., Guardiola-Albert, C., García-Cárdenas, R. P., Herrera, G., Barra, A., Molina, A. L., Tessitore, S., Staller, A., Ortega-Becerril, J. A., García-García, R. P. 2016. Interpolation of GPS and geological data using InSAR deformation maps: Method and application to land subsidence in the alto guadalentín aquifer (SE Spain). Remote Sensing 8, 11.
  • Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., Novali, F. 2008. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resources Research 44, 2.
  • Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40,1, 2375–2383.
  • Brunori, C. A., Bignami, C., Albano, M., Zucca, F., Samsonov, S., Groppelli, G., Norini, G., Saroli, M., Stramondo, S. 2015. Land subsidence, ground fissures and buried faults: InSAR monitoring of Ciudad Guzmán (Jalisco, Mexico). Remote Sensing 7, 7, 8610–8630.
  • Burgmann, R., Rosen, P. A., Fielding, E. J. 2000. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences 28.
  • Cabral-Cano, E., Dixon, T. H., Miralles-Wilhelm, F., Díaz- Molina, O., Sánchez-Zamora, O., Carande, R. E. 2008. Space geodetic imaging of rapid ground subsidence in Mexico City. Bulletin of the Geological Society of America 120, 11–12, 1556–1566.
  • Cabral-Cano, E., Solano-Rojas, D., Oliver-Cabrera, T., Wdowinski, S., Chaussard, E., Salazar-Tlaczani, L., Cigna, F., DeMets, C., Pacheco-Martínez, J. 2015. Satellite geodesy tools for ground subsidence and associated shallow faulting hazard assessment in central Mexico. Proceedings of the International Association of Hydrological Sciences 372, 255–260.
  • Conesa-García, C., Tomás, R., Herrera, G., López-Bermúdez, F., Cano, M., Navarro-Hervás, F., Pérez-Cutillas, P. 2016. Deformational behaviours of alluvial units detected by advanced radar interferometry in the vega media of the segura river, southeast spain. Geografiska Annaler, Series A: Physical Geography 98, 1, 15–38.
  • Cigna, F., Tapete, D. 2021. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment 253.
  • DSİ, 2022. General Directorate of General Directorate of State Hydraulic Works.
  • Emre, Ö., Duman, T. Y., Olgun, Ş., 2012. 1:250,000 Scale Active Fault Map Series of Turkey, Antakya (NJ 37-13) Quadrangle. Serial Number: 39 General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Ford, D., Williams, P. W. 1989. Karst Geomorphology and Hydrology. Unwin Hyman, London/Boston.
  • Hung, W. C., Hwang, C., Chen, Y. A., Chang, C. P., Yen,Y., Hooper, A., Yang, C. Y. 2011. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment 115, 4, 957–967.
  • İmamoğlu, M., Kahraman, F., Cakir, Z., Sanli, F. B. 2019. Ground deformation analysis of Bolvadin (W. Turkey) by means of multi-temporal InSAR techniques and sentinel-1 data. Remote Sensing 11, 9.
  • Karaca, S. O., Abir, I. A., Khan, S. D., Özsayın, E., Qureshi, A. 2021. Neotectonics of The Western Suleiman Fold Belt, Pakistan: Evidence for bookshelf faulting. Remote Sensing 13, 18.
  • Khan, S. D., Huang, Z., Karacay, A. 2014. Study of ground subsidence in northwest Harris county using GPS, LiDAR, and InSAR techniques. Natural Hazards 73, 3, 1143–1173.
  • Khan, S. D., Gadea, O. C. A., Tello Alvarado, A., Tirmizi, O. A. 2022. Surface Deformation Analysis of the Houston Area Using Time Series Interferometry and Emerging Hot Spot Analysis. Remote Sensing 14, 15.
  • Kuran, U., Gürbüz, M., Mirzaoğlu, M., Şahinbaz, D., Eravcı, B., Yaman., M. 2006. Antakya-Güzelburç Belediyesi Yerleşim Sahasına Ait Jeolojik ve Jeofizik Ön Etüt Raporu, Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi.
  • Liu, X., Zhao, C., Zhang, Q., Peng, J., Zhu, W., Lu, Z. 2018. Multi-temporal loss landslide inventory mapping with C-, X- and L-band SAR Datasets-A case study of Heifangtai loess landslides, China. Remote Sensing 10, 11.
  • Liu, X., Zhao, C., Zhang, Q., Lu, Z., Li, Z., Yang, C., Zhu, W., Liu-Zeng, J., Chen, L., Liu, C. 2021. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Engineering Geology 284.
  • López-Quiroz, P., Doin, M. P., Tupin, F., Briole, P., Nicolas, J. M. 2009. Time series analysis of Mexico City subsidence constrained by radar interferometry. Journal of Applied Geophysics 69, 1, 1–15.
  • Mahmoud, S., Reilinger, R., McClusky, S., Vernant, P., Tealeb, A. 2005. GPS evidence for northward motion of the Sinai Block: Implications for E. Mediterranean tectonics. Earth and Planetary Science Letters 238, 1–2, 217–224.
  • Mahmouda, Y., Masson, F., Meghraoui, M., Cakir, Z., Alchalbi, A., Yavasoglu, H., Yönlü, O., Daoud, M., Ergintav, S., İnan, S. 2013. Kinematic study at the junction of the east anatolian fault and the dead sea fault from GPS measurements. Journal of Geodynamics 67, 30–39.
  • Massonnet, D., Feigl, K. L. 1998. Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics 36, 4, 441–500.
  • Motagh, M., Djamour, Y., Walter, T. R., Wetzel, H. U., Zschau, J., Arabi, S. 2007. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, leveling and GPS. Geophysical Journal International 168, 2, 518–526.
  • Motagh, M., Shamshiri, R., Haghshenas Haghighi, M., Wetzel, H. U., Akbari, B., Nahavandchi, H., Roessner, S., Arabi, S. 2017. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology 218, 134–151.
  • Orhan, O. 2021. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environmental Monitoring and Assessment 193, 4.
  • Osmanoǧlu, B., Dixon, T. H., Wdowinski, S., Cabral- Cano, E., Jiang, Y. 2011. Mexico City subsidence observed with persistent scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation 13, 1, 1–12.
  • Raucoules, D., Colesanti, C., Carnec, C. 2007. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus - Geoscience 339, 5, 289–302.
  • Rucci, A., Ferretti, A., Monti Guarnieri, A., Rocca, F. 2012. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sensing of Environment 120, 156–163.
  • Sarıfakıoğlu, E. 2018. Türkiye Jeoloji Haritaları Serisi 1/100.000 Ölçekli Antakya P36-P37 ve Hama R36 Paftaları, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Simons, M., Rosen, P. A. 2015. Interferometric Synthetic Aperture Radar Geodesy. In Treatise on Geophysics: Second Edition 3, 339-385.
  • Solari, L., del Soldato, M., Bianchini, S., Ciampalini, A., Ezquerro, P., Montalti, R., Raspini, F., Moretti, S. 2018. From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. In Frontiers in Earth Science 6.
  • Sowter, A., bin Che Amat, M., Cigna, F., Marsh, S., Athab, A., Alshammari, L. 2016. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation 52, 230–242.
  • Strozzi, T., Wegmuller, U. 1999. Land Subsidence in Mexico City Mapped by ERS Differential SAR Interferometry.
  • Strozzi, T., Wegmiiller, U., Tosl, L., Bitelli, G., Spreckels, V. 2001. Land Subsidence Monitoring with Differential SAR Interferometry.
  • Şireci, N., Aslan, G., Çakir, Z. 2021. Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor sar data. Turkish Journal of Earth Sciences 30, 5, 681–697.
  • Tomás, R., Romero, R., Mulas, J., Marturià, J. J., Mallorquí, J. J., Lopez-Sanchez, J. M., Herrera, G., Gutiérrez, F., González, P. J., Fernández, J., Duque, S., Concha-Dimas, A., Cocksley, G., Castañeda, C., Carrasco, D., Blanco, P. 2014. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environmental Earth Sciences 71, 1, 163–181.
  • Tomás, R., Li, Z. 2017. Earth observations for geohazards: Present and future challenges. In Remote Sensing 9, 3.
  • Waltham, A. C., Fookes, P. G. 2003. Engineering classification of karst ground conditions.
  • Wöppelmann, G., le Cozannet, G., de Michele, M., Raucoules, D., Cazenave, A., Garcin, M., Hanson, S., Marcos, M., Santamaría-Gõmez, A. 2013. Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt Geophysical Research Letters 40, 12, 2953–2957.
  • Yan, Y., Doin, M. P., López-Quiroz, P., Tupin, F., Fruneau, B., Pinel, V., Trouvé, E. 2012. Mexico City subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5, 4, 1312–1326.
  • Yao, J., Yao, X., Liu, X. 2022. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sensing 14, 19.
  • Yao, X., Li, L., Zhang, Y., Zhou, Z., Liu, X. 2017. Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau. Natural Hazards 88, 3, 1727–1740.
  • Zebker, H.A., Goldstein, R. M. 1986. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research 91, 4993-4999.
  • Zhang, L., Lu, Z., Ding, X., Jung, H. S., Feng, G., Lee, C. W. 2012. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sensing of Environment 117, 429–439.
  • Zhu, W., Zhang, Q., Ding, X., Zhao, C., Yang, C., Qu, F., Qu, W. 2014. Landslide monitoring by combining of CR-InSAR and GPS techniques. Advances in Space Research 53, 3, 430–439.

Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR

Year 2024, Volume: 173 Issue: 173, 235 - 252, 26.04.2024
https://doi.org/10.19111/bulletinofmre.1298494

Abstract

The surface deformation caused by tectonic activities and anthropogenic factors poses a great threat to cities worldwide. The investigation and monitoring of these deformations are crucial in order to create risk analysis for the future. The problem in this case is to investigate the surface deformations and their negative effects caused by groundwater use and to identify possible landslide areas. In this study, the surface deformations in Hatay province were analyzed using SBAS-InSAR. The results from these analyses were evaluated by field observations. Sentinel-1 descending (183 datasets) and ascending (147 datasets) track geometries were selected to determine the surface deformation and its temporal evolution. Both east-west and vertical surface deformations were calculated, and the surface deformation profiles, surface 3D models and time series were created. These time series were associated with monthly precipitation data. The deformation area was interpreted with regard to available well-log data and geological setting of the study area. As a result of the study, a surface deformation resembling a bowl like structure was observed in the industrial zone located in the city center of Hatay-Güzelburç. The deformation rates are approximately 22.3 cm/year in the form of subsidence, 3.6 cm/year in the form of eastern movement and 10.1 cm/year in the form of western movement. The deformation of this bowllike structure decelerated in the winter and accelerated in the summer due to excessive water use. The average monthly precipitation dataset supports these results. The stratigraphic data from water wells and the presence of limestone outside the eastern boundary of the deformation area show a thick clay layer in the eastern block of the bowl-shaped deformation structure. The difference between these two units, which causes a sharp anomaly at the eastern border of the deformation area, is interpreted as a probable normal fault. The second study area where surface deformations are observed is the landslide zone. The deformation was found to be 7.5 cm/year in a westward direction and 1.5 cm/year as subsidence.

Ethical Statement

This study was supported by the General Directorate of Mineral Research and Exploration (MTA), Department of Geological Researches, within the scope of the “Investigation of the Activity of Active Faults on Cities” Project (Project No: 2022-30- 14-02-2) conducted between 2021-2022. We express our gratitude to Dr. Bahadır Şahin, Dr. Selim Özalp, Hasan Elmacı, Cem Özerk, and Adem Özata for their valuable contributions to field observations and discussions. Additionally, we thank Prof. Dr. Derman Dondurur for his constructive comments. Our thanks are also extended to Doç. Dr. Şule Gürboğa, the editor of the Bulletin of Mineral Research and Exploration, and the three referees. Finally, we convey our deepest appreciation and heartfelt gratitude to Tiffany Faller Karaca for her support.

Supporting Institution

This study was supported by the General Directorate of Mineral Research and Exploration (MTA), Department of Geological Researches, within the scope of the “Investigation of the Activity of Active Faults on Cities” Project (Project No: 2022-30- 14-02-2) conducted between 2021-2022. We express our gratitude to Dr. Bahadır Şahin, Dr. Selim Özalp, Hasan Elmacı, Cem Özerk, and Adem Özata for their valuable contributions to field observations and discussions. Additionally, we thank Prof. Dr. Derman D

Project Number

Project No: 2022-30- 14-02-2

Thanks

This study was supported by the General Directorate of Mineral Research and Exploration (MTA), Department of Geological Researches, within the scope of the “Investigation of the Activity of Active Faults on Cities” Project (Project No: 2022-30- 14-02-2) conducted between 2021-2022. We express our gratitude to Dr. Bahadır Şahin, Dr. Selim Özalp, Hasan Elmacı, Cem Özerk, and Adem Özata for their valuable contributions to field observations and discussions. Additionally, we thank Prof. Dr. Derman Dondurur for his constructive comments. Our thanks are also extended to Doç. Dr. Şule Gürboğa, the editor of the Bulletin of Mineral Research and Exploration, and the three referees. Finally, we convey our deepest appreciation and heartfelt gratitude to Tiffany Faller Karaca for her support.

References

  • Aimaiti, Y., Yamazaki, F., Liu, W., Kasimu, A. 2017. Monitoring of land-surface deformation in the Karamay oilfield, Xinjiang, China, using SAR interferometry. Applied Sciences 7, 8.
  • Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., Laczniak, R. J. 1999. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27, 6, 483–486.
  • Anderssohn, J., Wetzel, H. U., Walter, T. R., Motagh, M., Djamour, Y., Kaufmann, H. 2008. Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: Results from InSAR and leveling. Geophysical Journal International 174, 1, 287–294.
  • Aslan, G., Çakır, Z., Ergintav, S., Lasserre, C., Renard, F. 2018. Analysis of secular ground motions in istanbul from a long-term InSAR time-series (1992-2017). Remote Sensing 10, 3.
  • Aslan, G., Çakir, Z., Lasserre, C., Renard, F. 2019. Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending sentinel-1 satellite data. Remote Sensing 11, 1.
  • Béjar-Pizarro, M., Guardiola-Albert, C., García-Cárdenas, R. P., Herrera, G., Barra, A., Molina, A. L., Tessitore, S., Staller, A., Ortega-Becerril, J. A., García-García, R. P. 2016. Interpolation of GPS and geological data using InSAR deformation maps: Method and application to land subsidence in the alto guadalentín aquifer (SE Spain). Remote Sensing 8, 11.
  • Bell, J. W., Amelung, F., Ferretti, A., Bianchi, M., Novali, F. 2008. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resources Research 44, 2.
  • Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40,1, 2375–2383.
  • Brunori, C. A., Bignami, C., Albano, M., Zucca, F., Samsonov, S., Groppelli, G., Norini, G., Saroli, M., Stramondo, S. 2015. Land subsidence, ground fissures and buried faults: InSAR monitoring of Ciudad Guzmán (Jalisco, Mexico). Remote Sensing 7, 7, 8610–8630.
  • Burgmann, R., Rosen, P. A., Fielding, E. J. 2000. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences 28.
  • Cabral-Cano, E., Dixon, T. H., Miralles-Wilhelm, F., Díaz- Molina, O., Sánchez-Zamora, O., Carande, R. E. 2008. Space geodetic imaging of rapid ground subsidence in Mexico City. Bulletin of the Geological Society of America 120, 11–12, 1556–1566.
  • Cabral-Cano, E., Solano-Rojas, D., Oliver-Cabrera, T., Wdowinski, S., Chaussard, E., Salazar-Tlaczani, L., Cigna, F., DeMets, C., Pacheco-Martínez, J. 2015. Satellite geodesy tools for ground subsidence and associated shallow faulting hazard assessment in central Mexico. Proceedings of the International Association of Hydrological Sciences 372, 255–260.
  • Conesa-García, C., Tomás, R., Herrera, G., López-Bermúdez, F., Cano, M., Navarro-Hervás, F., Pérez-Cutillas, P. 2016. Deformational behaviours of alluvial units detected by advanced radar interferometry in the vega media of the segura river, southeast spain. Geografiska Annaler, Series A: Physical Geography 98, 1, 15–38.
  • Cigna, F., Tapete, D. 2021. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment 253.
  • DSİ, 2022. General Directorate of General Directorate of State Hydraulic Works.
  • Emre, Ö., Duman, T. Y., Olgun, Ş., 2012. 1:250,000 Scale Active Fault Map Series of Turkey, Antakya (NJ 37-13) Quadrangle. Serial Number: 39 General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Ford, D., Williams, P. W. 1989. Karst Geomorphology and Hydrology. Unwin Hyman, London/Boston.
  • Hung, W. C., Hwang, C., Chen, Y. A., Chang, C. P., Yen,Y., Hooper, A., Yang, C. Y. 2011. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment 115, 4, 957–967.
  • İmamoğlu, M., Kahraman, F., Cakir, Z., Sanli, F. B. 2019. Ground deformation analysis of Bolvadin (W. Turkey) by means of multi-temporal InSAR techniques and sentinel-1 data. Remote Sensing 11, 9.
  • Karaca, S. O., Abir, I. A., Khan, S. D., Özsayın, E., Qureshi, A. 2021. Neotectonics of The Western Suleiman Fold Belt, Pakistan: Evidence for bookshelf faulting. Remote Sensing 13, 18.
  • Khan, S. D., Huang, Z., Karacay, A. 2014. Study of ground subsidence in northwest Harris county using GPS, LiDAR, and InSAR techniques. Natural Hazards 73, 3, 1143–1173.
  • Khan, S. D., Gadea, O. C. A., Tello Alvarado, A., Tirmizi, O. A. 2022. Surface Deformation Analysis of the Houston Area Using Time Series Interferometry and Emerging Hot Spot Analysis. Remote Sensing 14, 15.
  • Kuran, U., Gürbüz, M., Mirzaoğlu, M., Şahinbaz, D., Eravcı, B., Yaman., M. 2006. Antakya-Güzelburç Belediyesi Yerleşim Sahasına Ait Jeolojik ve Jeofizik Ön Etüt Raporu, Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi.
  • Liu, X., Zhao, C., Zhang, Q., Peng, J., Zhu, W., Lu, Z. 2018. Multi-temporal loss landslide inventory mapping with C-, X- and L-band SAR Datasets-A case study of Heifangtai loess landslides, China. Remote Sensing 10, 11.
  • Liu, X., Zhao, C., Zhang, Q., Lu, Z., Li, Z., Yang, C., Zhu, W., Liu-Zeng, J., Chen, L., Liu, C. 2021. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Engineering Geology 284.
  • López-Quiroz, P., Doin, M. P., Tupin, F., Briole, P., Nicolas, J. M. 2009. Time series analysis of Mexico City subsidence constrained by radar interferometry. Journal of Applied Geophysics 69, 1, 1–15.
  • Mahmoud, S., Reilinger, R., McClusky, S., Vernant, P., Tealeb, A. 2005. GPS evidence for northward motion of the Sinai Block: Implications for E. Mediterranean tectonics. Earth and Planetary Science Letters 238, 1–2, 217–224.
  • Mahmouda, Y., Masson, F., Meghraoui, M., Cakir, Z., Alchalbi, A., Yavasoglu, H., Yönlü, O., Daoud, M., Ergintav, S., İnan, S. 2013. Kinematic study at the junction of the east anatolian fault and the dead sea fault from GPS measurements. Journal of Geodynamics 67, 30–39.
  • Massonnet, D., Feigl, K. L. 1998. Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics 36, 4, 441–500.
  • Motagh, M., Djamour, Y., Walter, T. R., Wetzel, H. U., Zschau, J., Arabi, S. 2007. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, leveling and GPS. Geophysical Journal International 168, 2, 518–526.
  • Motagh, M., Shamshiri, R., Haghshenas Haghighi, M., Wetzel, H. U., Akbari, B., Nahavandchi, H., Roessner, S., Arabi, S. 2017. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology 218, 134–151.
  • Orhan, O. 2021. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environmental Monitoring and Assessment 193, 4.
  • Osmanoǧlu, B., Dixon, T. H., Wdowinski, S., Cabral- Cano, E., Jiang, Y. 2011. Mexico City subsidence observed with persistent scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation 13, 1, 1–12.
  • Raucoules, D., Colesanti, C., Carnec, C. 2007. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus - Geoscience 339, 5, 289–302.
  • Rucci, A., Ferretti, A., Monti Guarnieri, A., Rocca, F. 2012. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sensing of Environment 120, 156–163.
  • Sarıfakıoğlu, E. 2018. Türkiye Jeoloji Haritaları Serisi 1/100.000 Ölçekli Antakya P36-P37 ve Hama R36 Paftaları, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Simons, M., Rosen, P. A. 2015. Interferometric Synthetic Aperture Radar Geodesy. In Treatise on Geophysics: Second Edition 3, 339-385.
  • Solari, L., del Soldato, M., Bianchini, S., Ciampalini, A., Ezquerro, P., Montalti, R., Raspini, F., Moretti, S. 2018. From ERS 1/2 to Sentinel-1: Subsidence Monitoring in Italy in the Last Two Decades. In Frontiers in Earth Science 6.
  • Sowter, A., bin Che Amat, M., Cigna, F., Marsh, S., Athab, A., Alshammari, L. 2016. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation 52, 230–242.
  • Strozzi, T., Wegmuller, U. 1999. Land Subsidence in Mexico City Mapped by ERS Differential SAR Interferometry.
  • Strozzi, T., Wegmiiller, U., Tosl, L., Bitelli, G., Spreckels, V. 2001. Land Subsidence Monitoring with Differential SAR Interferometry.
  • Şireci, N., Aslan, G., Çakir, Z. 2021. Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor sar data. Turkish Journal of Earth Sciences 30, 5, 681–697.
  • Tomás, R., Romero, R., Mulas, J., Marturià, J. J., Mallorquí, J. J., Lopez-Sanchez, J. M., Herrera, G., Gutiérrez, F., González, P. J., Fernández, J., Duque, S., Concha-Dimas, A., Cocksley, G., Castañeda, C., Carrasco, D., Blanco, P. 2014. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environmental Earth Sciences 71, 1, 163–181.
  • Tomás, R., Li, Z. 2017. Earth observations for geohazards: Present and future challenges. In Remote Sensing 9, 3.
  • Waltham, A. C., Fookes, P. G. 2003. Engineering classification of karst ground conditions.
  • Wöppelmann, G., le Cozannet, G., de Michele, M., Raucoules, D., Cazenave, A., Garcin, M., Hanson, S., Marcos, M., Santamaría-Gõmez, A. 2013. Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt Geophysical Research Letters 40, 12, 2953–2957.
  • Yan, Y., Doin, M. P., López-Quiroz, P., Tupin, F., Fruneau, B., Pinel, V., Trouvé, E. 2012. Mexico City subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5, 4, 1312–1326.
  • Yao, J., Yao, X., Liu, X. 2022. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sensing 14, 19.
  • Yao, X., Li, L., Zhang, Y., Zhou, Z., Liu, X. 2017. Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau. Natural Hazards 88, 3, 1727–1740.
  • Zebker, H.A., Goldstein, R. M. 1986. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research 91, 4993-4999.
  • Zhang, L., Lu, Z., Ding, X., Jung, H. S., Feng, G., Lee, C. W. 2012. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sensing of Environment 117, 429–439.
  • Zhu, W., Zhang, Q., Ding, X., Zhao, C., Yang, C., Qu, F., Qu, W. 2014. Landslide monitoring by combining of CR-InSAR and GPS techniques. Advances in Space Research 53, 3, 430–439.
There are 52 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şükrü Onur Karaca 0000-0002-2774-4814

Gültekin Erten 0000-0002-3844-8666

Semih Ergintav 0000-0001-7080-183X

Shuhab D. Khan This is me 0000-0002-3848-8190

Project Number Project No: 2022-30- 14-02-2
Publication Date April 26, 2024
Published in Issue Year 2024 Volume: 173 Issue: 173

Cite

APA Karaca, Ş. O., Erten, G., Ergintav, S., Khan, S. D. (2024). Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR. Bulletin of the Mineral Research and Exploration, 173(173), 235-252. https://doi.org/10.19111/bulletinofmre.1298494
AMA Karaca ŞO, Erten G, Ergintav S, Khan SD. Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR. Bull.Min.Res.Exp. April 2024;173(173):235-252. doi:10.19111/bulletinofmre.1298494
Chicago Karaca, Şükrü Onur, Gültekin Erten, Semih Ergintav, and Shuhab D. Khan. “Anthropogenic Problems Threatening Major Cities: Largest Surface Deformations Observed in Hatay, Türkiye Based on SBAS-InSAR”. Bulletin of the Mineral Research and Exploration 173, no. 173 (April 2024): 235-52. https://doi.org/10.19111/bulletinofmre.1298494.
EndNote Karaca ŞO, Erten G, Ergintav S, Khan SD (April 1, 2024) Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR. Bulletin of the Mineral Research and Exploration 173 173 235–252.
IEEE Ş. O. Karaca, G. Erten, S. Ergintav, and S. D. Khan, “Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR”, Bull.Min.Res.Exp., vol. 173, no. 173, pp. 235–252, 2024, doi: 10.19111/bulletinofmre.1298494.
ISNAD Karaca, Şükrü Onur et al. “Anthropogenic Problems Threatening Major Cities: Largest Surface Deformations Observed in Hatay, Türkiye Based on SBAS-InSAR”. Bulletin of the Mineral Research and Exploration 173/173 (April 2024), 235-252. https://doi.org/10.19111/bulletinofmre.1298494.
JAMA Karaca ŞO, Erten G, Ergintav S, Khan SD. Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR. Bull.Min.Res.Exp. 2024;173:235–252.
MLA Karaca, Şükrü Onur et al. “Anthropogenic Problems Threatening Major Cities: Largest Surface Deformations Observed in Hatay, Türkiye Based on SBAS-InSAR”. Bulletin of the Mineral Research and Exploration, vol. 173, no. 173, 2024, pp. 235-52, doi:10.19111/bulletinofmre.1298494.
Vancouver Karaca ŞO, Erten G, Ergintav S, Khan SD. Anthropogenic problems threatening major cities: Largest surface deformations observed in Hatay, Türkiye based on SBAS-InSAR. Bull.Min.Res.Exp. 2024;173(173):235-52.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en