Research Article
BibTex RIS Cite

Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis

Year 2024, Volume: 14 Issue: 1, 223 - 229, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1278388

Abstract

Objective: The aim of the study is to compare the effect of monolithic translucent zirconia ceramic (TZI) and monolithic lithium disilicate glass ceramic (LDS) restorative materials on stress distributions in implant components and surrounding bone tissues in implant-supported conometric single crown restorations with a conical connection system by using 3D finite element analysis.
Methods: Restorations produced with two different all-ceramic materials using a conometric abutment and a conometric cap on the implant with a conical connection system were placed in the maxillary right second premolar region. 3D finite element analysis was used to examine the amount and distribution of stresses in implant components, in cortical and cancellous bone tissues surrounding the implant and in crowns under vertical and oblique loading. For the statistical analysis one-way ANOVA and independent samples t-test were used (p<.05).
Results: In oblique 100N simulation, maximum stress distribution in implant and its components occurred at the implant abutment contact as 475.63 MPa for the LDS. The screw’s peak stress values were determined to be 239.09 MPa in the transition zone and 280.061 MPa in the thread. On the bone surface, maximum and minimum cortical principal stress values were 61.25 MPa and – 62.028 MPa. During oblique loading, LDS exhibited the greatest surface stress on the cap as 441.33 MPa. Generally, tapping phase showed the lowest stress (p<.05). There was no significant difference regarding the materials (p> .05).
Conclusion: von Misess and principal stresses are not very high in any location therefore conical connections are more promising in terms of future success.

References

  • Wolfart S, Kern M. A new design for all-ceramic inlay-retained fixed partial dentures: a report of 2 cases. Quintessence Int. 2006; 37: 27-33.
  • Chen J, Cai H, Suo L, Xue Y, Wang J, Wan Q. A systematic review of the survival and complication rates of inlay-retained fixed dental prostheses. J Dent. 2017;59:2-10. DOI:10.1016/j.jdent.2017.02.006
  • Saadoun AP, Le Gall MG, Touati B. Current trends in implantology: Part 1—Biological response, implant stability, and implant design. Pract Proced Aesthet Dent. 2004;16(7):529-535.
  • Sailer I, Karasan D, Todorovic A, Ligoutsikou M, Pjetursson BE. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130-144. DOI: 10.1111/prd.12416
  • Linkevicius T. Zero Bone Loss Concepts. 1st Ed. USA:Qintessence Publishing; 2019.
  • Drago C. Implant Restorations: A Step-By-Step Guide. 3rd Ed. Istanbul: Nobel; 2017.
  • Lauritano D, Moreo G, Lucchese A, Viganoni C, Limongelli L, Carinci F. The impact of implant-abutment connection on clinical outcomes and microbial colonization: a narrative review. Materials. 2020; 13 (5): 1131. DOI: 10.3390/ma13051131
  • Ceruso FM, Barnaba P, Mazzoleni S, Ottria L, Gargari M, Zuccon A, Bruno G, DI Fiore A. Implant-abutment connections on single crowns: a systematic review. Oral Implantol. 2017; 10(4): 349-53. DOI: 10.11138/orl/2017.10.4.349
  • He Y, Fok A, Aparicio C, Teng W. Contact analysis of gap formation at dental implant-abutment interface under oblique loading: a numerical-experimental study. Clin. Implant Dent. Relat. Res. 2019; 21: 741–752. DOI: 10.1111/cid.12792
  • Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24:71-6. DOI: 10.1111/j.1600-0501.2012.02453.x
  • Degidi M, Nardi D, Sighinolfi G, Degidi D, Piattelli A. The conometric concept: a two-year follow-up of fixed partial CEREC restorations supported by cone-in- cone abutments. J Prosthodont. 2019;28:e780-e787. DOI: 10.1111/jopr.12962
  • Cawood JI, Howell RA. A classification of the edentulous jaws. Int J Oral Maxillofac Surg. 1988;17:232-6. DOI: 10.1016/s0901-5027(88)80047-x
  • Al-Ekrish AA, Widmann G, Alfadda SA. Revised, Computed tomography-based Lekholm and Zarb jawbone quality classification. Int J Prosthodont. 2018;31:342- 345. DOI:10.11607/ijp.5714
  • Ash MM, Nelson SJ. Wheeler’s Dental Anatomy, Physiology and Occlusion. 9th edition. Philadelphia. WB Saunders;2009.
  • Kaleli N, Sarac D, Külünk S, Öztürk Ö. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent. 2018;119:437-445. DOI: 10.1016/j.prosdent.2017.03.008
  • De la Rosa Castolo G, Perez SV, Arnoux PJ, Badih L, Bonnet F, Behr M. Implant-supported overdentures with different clinical configurations: mechanical resistance using a numerical approach. J Prosthet Dent. 2019;121(3): 546.e1-546.e10. DOI: 10.1016/j.prosdent.2018.09.023
  • Elias DM, Valerio CS, de Oliveira DD, Manzi FR, Zenóbio EG, Seraidarian PI. Evaluation of different heights of prosthetic crowns supported by an ultra-short implant using three-dimensional finite element analysis. Int J Prosthodont. 2020;33:81-90. DOI: 10.11607/ijp.6247
  • Bulaqi HA, Mousavi Mashhadi M, Geramipanah F, Safari H, Paknejad M. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method. J Prosthet Dent. 2015;113:405-11. DOI: 10.1016/j.prosdent.2014.09.021
  • Lang LA, Kang B, Wang RF, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent. 2003;90:539-46. DOI: 10.1016/j.prosdent.2003.09.012
  • Tezulas E. The effect of the different restorative materials on stress distribution of implant-supported econometric single crown restorations: A three-dimensional finite element analysis. J Esthet Restor Dent. 2020. ID: JERD-RA-11-20-006.
  • Shelton R. Biocompatibility of Dental Biomaterials. 1st Ed. Birmingham. Woodhead Publishing; 2016.
  • Geng JP, Keson BCT, Liv GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85:585-98. DOI: 10.1067/mpr.2001.115251
  • Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005;93:227-34. DOI: 10.1016/j.prosdent.2004.12.019
  • Sagat G, Yalcin S, Gultekin BA, Mijiritsky E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010;19:498-508. DOI: 10.1097/ID.0b013e3181fa4267
  • Tabata LF, Rocha EP, Barão VA, Assunção WG. Platform switching: biomechanical evaluation using three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2011;26:482-91.
  • Akça K, Iplikçioğlu H. Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism. J Oral Rehabil. 2002;29:350-6. DOI: 10.1046/j.1365-2842.2002.00872.x
  • Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J. 2005;24:219-24. DOI: 10.4012/dmj.24.219
  • Gomes ÉA, Barão VA, Rocha EP, de Almeida ÉO, Assunção WG. Effect of metal- ceramic or all-ceramic superstructure materials on stress distribution in a single implant-supported prosthesis: three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2011;26:1202-9.
  • Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PS. Stress analysis in bone tissue around single implants with different diameters and veneering materials: A 3-D finite element study. Mater Sci Eng C Mater Biol Appl. 2013;33:4700-14. DOI: 10.1016/j.msec.2013.07.027
  • Kitagawa T, Tanimoto Y, Iida T, Murakami H. Effects of material and coefficient of friction on taper joint dental implants. J Prosthodont Res. 2020;13:1883- 1958(19)30349-4. DOI: 10.1016/j.jpor.2019.10.003
  • Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24:71-6. DOI: 10.1111/j.1600-0501.2012.02453.x
  • Degidi M, Nardi D, Gianluca S, Piattelli A. The conometric concept: a 5-year follow-up of fixed partial monolithic zirconia restorations supported by cone-in-cone sbutments. Int J Periodontics Restorative Dent. 2018;38(3):363-371. DOI: 10.11607/prd.3130
  • Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol. 2008;79:2166-72. DOI: 10.1902/jop.2008.080178
  • Canay S, Akça K. Biomechanical aspects of bone-level diameter shifting at implant- abutment interface. Implant Dent. 2009;18:239-48. DOI: 10.1097/ID.0b013e318198ffd1
  • Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent. 2005;93:38-44. DOI: 10.1016/j.prosdent.2004.10.001
  • Degidi M, Nardi D, Sighinolfi G, Piattelli A. The conometric concept: definitive fixed lithium disilicate restorations supported by conical abutments. J Prosthodont. 2018;27(7):605-610. DOI: 10.1111/jopr.12548
  • Degidi M, Nardi D, Piattelli A. The conometric concept: coupling connection for ımmediately loaded titanium-reinforced provisional fixed partial dentures-a case series. Int J Periodontics Restorative Dent. 2016;36:347-54. DOI: 10.11607/prd.2428
  • Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;100:422-31. DOI: 10.1016/S0022-3913(08)60259-0
  • Baggi L, Di Girolamo M, Vairo G, Sannino G. Comparative evaluation of osseointegrated dental implants based on platform-switching concept: influence of diameter, length, thread shape, and in-bone positioning depth on stress-based performance. Comput Math Methods Med. 2013;2013:250929. DOI: 10.1155/2013/250929
  • Brune A, Stiesch M, Eisenburger M, Greuling A. The effect of different occlusal contact situations on peri-implant bone stress - a contact finite element analysis of indirect axial loading. Mater Sci Eng C Mater Biol Appl. 2019;99:367-373. DOI: 10.1016/j.msec.2019.01.104
  • Lemos CAA, Verri FR, Noritomi PY, de Souza Batista VE,VE, Cruz RS, de Luna Gomes JM, de Oliveira Limírio JPJ, Pellizzer EP. Biomechanical evaluation of different ımplant-abutment connections, retention systems, and restorative materials in the ımplant-supported single crowns using 3d finite element analysis. J Oral Implantol. 2022;48(3):194-201. DOI: 10.1563/aaid-joi-D-20-00328
  • Wittneben JG, Joda T, Weber HP, Brägger U. Screw retained vs. cement retained implant-supported fixed dental prosthesis. Periodontol 2000. 2017; 73(1):141-151. DOI: 10.1111/prd.12168
  • Jörn D, Kohorst P, Besdo S, Rücker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent. 2014;112:340-348. DOI: 10.1016/j.prosdent.2013.10.016
Year 2024, Volume: 14 Issue: 1, 223 - 229, 28.03.2024
https://doi.org/10.33808/clinexphealthsci.1278388

Abstract

References

  • Wolfart S, Kern M. A new design for all-ceramic inlay-retained fixed partial dentures: a report of 2 cases. Quintessence Int. 2006; 37: 27-33.
  • Chen J, Cai H, Suo L, Xue Y, Wang J, Wan Q. A systematic review of the survival and complication rates of inlay-retained fixed dental prostheses. J Dent. 2017;59:2-10. DOI:10.1016/j.jdent.2017.02.006
  • Saadoun AP, Le Gall MG, Touati B. Current trends in implantology: Part 1—Biological response, implant stability, and implant design. Pract Proced Aesthet Dent. 2004;16(7):529-535.
  • Sailer I, Karasan D, Todorovic A, Ligoutsikou M, Pjetursson BE. Prosthetic failures in dental implant therapy. Periodontol 2000. 2022;88(1):130-144. DOI: 10.1111/prd.12416
  • Linkevicius T. Zero Bone Loss Concepts. 1st Ed. USA:Qintessence Publishing; 2019.
  • Drago C. Implant Restorations: A Step-By-Step Guide. 3rd Ed. Istanbul: Nobel; 2017.
  • Lauritano D, Moreo G, Lucchese A, Viganoni C, Limongelli L, Carinci F. The impact of implant-abutment connection on clinical outcomes and microbial colonization: a narrative review. Materials. 2020; 13 (5): 1131. DOI: 10.3390/ma13051131
  • Ceruso FM, Barnaba P, Mazzoleni S, Ottria L, Gargari M, Zuccon A, Bruno G, DI Fiore A. Implant-abutment connections on single crowns: a systematic review. Oral Implantol. 2017; 10(4): 349-53. DOI: 10.11138/orl/2017.10.4.349
  • He Y, Fok A, Aparicio C, Teng W. Contact analysis of gap formation at dental implant-abutment interface under oblique loading: a numerical-experimental study. Clin. Implant Dent. Relat. Res. 2019; 21: 741–752. DOI: 10.1111/cid.12792
  • Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24:71-6. DOI: 10.1111/j.1600-0501.2012.02453.x
  • Degidi M, Nardi D, Sighinolfi G, Degidi D, Piattelli A. The conometric concept: a two-year follow-up of fixed partial CEREC restorations supported by cone-in- cone abutments. J Prosthodont. 2019;28:e780-e787. DOI: 10.1111/jopr.12962
  • Cawood JI, Howell RA. A classification of the edentulous jaws. Int J Oral Maxillofac Surg. 1988;17:232-6. DOI: 10.1016/s0901-5027(88)80047-x
  • Al-Ekrish AA, Widmann G, Alfadda SA. Revised, Computed tomography-based Lekholm and Zarb jawbone quality classification. Int J Prosthodont. 2018;31:342- 345. DOI:10.11607/ijp.5714
  • Ash MM, Nelson SJ. Wheeler’s Dental Anatomy, Physiology and Occlusion. 9th edition. Philadelphia. WB Saunders;2009.
  • Kaleli N, Sarac D, Külünk S, Öztürk Ö. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent. 2018;119:437-445. DOI: 10.1016/j.prosdent.2017.03.008
  • De la Rosa Castolo G, Perez SV, Arnoux PJ, Badih L, Bonnet F, Behr M. Implant-supported overdentures with different clinical configurations: mechanical resistance using a numerical approach. J Prosthet Dent. 2019;121(3): 546.e1-546.e10. DOI: 10.1016/j.prosdent.2018.09.023
  • Elias DM, Valerio CS, de Oliveira DD, Manzi FR, Zenóbio EG, Seraidarian PI. Evaluation of different heights of prosthetic crowns supported by an ultra-short implant using three-dimensional finite element analysis. Int J Prosthodont. 2020;33:81-90. DOI: 10.11607/ijp.6247
  • Bulaqi HA, Mousavi Mashhadi M, Geramipanah F, Safari H, Paknejad M. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method. J Prosthet Dent. 2015;113:405-11. DOI: 10.1016/j.prosdent.2014.09.021
  • Lang LA, Kang B, Wang RF, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent. 2003;90:539-46. DOI: 10.1016/j.prosdent.2003.09.012
  • Tezulas E. The effect of the different restorative materials on stress distribution of implant-supported econometric single crown restorations: A three-dimensional finite element analysis. J Esthet Restor Dent. 2020. ID: JERD-RA-11-20-006.
  • Shelton R. Biocompatibility of Dental Biomaterials. 1st Ed. Birmingham. Woodhead Publishing; 2016.
  • Geng JP, Keson BCT, Liv GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001;85:585-98. DOI: 10.1067/mpr.2001.115251
  • Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005;93:227-34. DOI: 10.1016/j.prosdent.2004.12.019
  • Sagat G, Yalcin S, Gultekin BA, Mijiritsky E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010;19:498-508. DOI: 10.1097/ID.0b013e3181fa4267
  • Tabata LF, Rocha EP, Barão VA, Assunção WG. Platform switching: biomechanical evaluation using three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2011;26:482-91.
  • Akça K, Iplikçioğlu H. Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism. J Oral Rehabil. 2002;29:350-6. DOI: 10.1046/j.1365-2842.2002.00872.x
  • Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J. 2005;24:219-24. DOI: 10.4012/dmj.24.219
  • Gomes ÉA, Barão VA, Rocha EP, de Almeida ÉO, Assunção WG. Effect of metal- ceramic or all-ceramic superstructure materials on stress distribution in a single implant-supported prosthesis: three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2011;26:1202-9.
  • Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PS. Stress analysis in bone tissue around single implants with different diameters and veneering materials: A 3-D finite element study. Mater Sci Eng C Mater Biol Appl. 2013;33:4700-14. DOI: 10.1016/j.msec.2013.07.027
  • Kitagawa T, Tanimoto Y, Iida T, Murakami H. Effects of material and coefficient of friction on taper joint dental implants. J Prosthodont Res. 2020;13:1883- 1958(19)30349-4. DOI: 10.1016/j.jpor.2019.10.003
  • Linkevicius T, Vindasiute E, Puisys A, Linkeviciene L, Maslova N, Puriene A. The influence of the cementation margin position on the amount of undetected cement. A prospective clinical study. Clin Oral Implants Res. 2013;24:71-6. DOI: 10.1111/j.1600-0501.2012.02453.x
  • Degidi M, Nardi D, Gianluca S, Piattelli A. The conometric concept: a 5-year follow-up of fixed partial monolithic zirconia restorations supported by cone-in-cone sbutments. Int J Periodontics Restorative Dent. 2018;38(3):363-371. DOI: 10.11607/prd.3130
  • Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol. 2008;79:2166-72. DOI: 10.1902/jop.2008.080178
  • Canay S, Akça K. Biomechanical aspects of bone-level diameter shifting at implant- abutment interface. Implant Dent. 2009;18:239-48. DOI: 10.1097/ID.0b013e318198ffd1
  • Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent. 2005;93:38-44. DOI: 10.1016/j.prosdent.2004.10.001
  • Degidi M, Nardi D, Sighinolfi G, Piattelli A. The conometric concept: definitive fixed lithium disilicate restorations supported by conical abutments. J Prosthodont. 2018;27(7):605-610. DOI: 10.1111/jopr.12548
  • Degidi M, Nardi D, Piattelli A. The conometric concept: coupling connection for ımmediately loaded titanium-reinforced provisional fixed partial dentures-a case series. Int J Periodontics Restorative Dent. 2016;36:347-54. DOI: 10.11607/prd.2428
  • Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. J Prosthet Dent. 2008;100:422-31. DOI: 10.1016/S0022-3913(08)60259-0
  • Baggi L, Di Girolamo M, Vairo G, Sannino G. Comparative evaluation of osseointegrated dental implants based on platform-switching concept: influence of diameter, length, thread shape, and in-bone positioning depth on stress-based performance. Comput Math Methods Med. 2013;2013:250929. DOI: 10.1155/2013/250929
  • Brune A, Stiesch M, Eisenburger M, Greuling A. The effect of different occlusal contact situations on peri-implant bone stress - a contact finite element analysis of indirect axial loading. Mater Sci Eng C Mater Biol Appl. 2019;99:367-373. DOI: 10.1016/j.msec.2019.01.104
  • Lemos CAA, Verri FR, Noritomi PY, de Souza Batista VE,VE, Cruz RS, de Luna Gomes JM, de Oliveira Limírio JPJ, Pellizzer EP. Biomechanical evaluation of different ımplant-abutment connections, retention systems, and restorative materials in the ımplant-supported single crowns using 3d finite element analysis. J Oral Implantol. 2022;48(3):194-201. DOI: 10.1563/aaid-joi-D-20-00328
  • Wittneben JG, Joda T, Weber HP, Brägger U. Screw retained vs. cement retained implant-supported fixed dental prosthesis. Periodontol 2000. 2017; 73(1):141-151. DOI: 10.1111/prd.12168
  • Jörn D, Kohorst P, Besdo S, Rücker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent. 2014;112:340-348. DOI: 10.1016/j.prosdent.2013.10.016
There are 43 citations in total.

Details

Primary Language English
Subjects Prosthodontics
Journal Section Articles
Authors

Sinem Vural 0000-0001-8842-0226

Buket Evren This is me 0000-0003-2175-9289

Coşkun Yıldız This is me 0000-0002-3812-8339

Early Pub Date March 23, 2024
Publication Date March 28, 2024
Submission Date April 6, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Vural, S., Evren, B., & Yıldız, C. (2024). Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis. Clinical and Experimental Health Sciences, 14(1), 223-229. https://doi.org/10.33808/clinexphealthsci.1278388
AMA Vural S, Evren B, Yıldız C. Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis. Clinical and Experimental Health Sciences. March 2024;14(1):223-229. doi:10.33808/clinexphealthsci.1278388
Chicago Vural, Sinem, Buket Evren, and Coşkun Yıldız. “Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis”. Clinical and Experimental Health Sciences 14, no. 1 (March 2024): 223-29. https://doi.org/10.33808/clinexphealthsci.1278388.
EndNote Vural S, Evren B, Yıldız C (March 1, 2024) Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis. Clinical and Experimental Health Sciences 14 1 223–229.
IEEE S. Vural, B. Evren, and C. Yıldız, “Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis”, Clinical and Experimental Health Sciences, vol. 14, no. 1, pp. 223–229, 2024, doi: 10.33808/clinexphealthsci.1278388.
ISNAD Vural, Sinem et al. “Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis”. Clinical and Experimental Health Sciences 14/1 (March 2024), 223-229. https://doi.org/10.33808/clinexphealthsci.1278388.
JAMA Vural S, Evren B, Yıldız C. Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis. Clinical and Experimental Health Sciences. 2024;14:223–229.
MLA Vural, Sinem et al. “Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis”. Clinical and Experimental Health Sciences, vol. 14, no. 1, 2024, pp. 223-9, doi:10.33808/clinexphealthsci.1278388.
Vancouver Vural S, Evren B, Yıldız C. Evaluation of Stress Distributions in All Ceramic Conometric Single Crown Restorations: 3-Dimensional Finite Element Analysis. Clinical and Experimental Health Sciences. 2024;14(1):223-9.

14639   14640