Research Article
BibTex RIS Cite

The Effect of the Distance Between Unit Cells on the Frequency Stability of Frequency Selective Surfaces

Year 2023, Volume: 16 Issue: 3, 643 - 653, 31.12.2023
https://doi.org/10.18185/erzifbed.1234111

Abstract

Periyodik iletken geometriler literatürde frekans seçici yüzey (FSY) olarak adlandırılmaktadırlar. Geometrilerine bağlı olarak filtre davranışı sergileyen FSY'lerin frekans yanıtları geometrilerine, elektromanyetik dalganın geliş açısına, frekansına ve polarizasyonuna bağlıdır. Periyodik iletken geometriler arasındaki mesafe FSY'lerin en önemli parametrelerinden birisidir ve frekans cevabı üzerine olan etkisi literatürde bugüne kadar yeterince araştırılmamıştır. Bu çalışmada dört farklı FSY geometrisi seçilerek, periyodik iletken geometriler arasındaki mesafenin FSY’lerin frekans kararlılığı üzerine olan etkisi incelenmiştir. Seçilen FSY geometrilerinin benzetimleri Ansoft HFSS yazılımı tarafından gerçekleştirilmiş ve oldukça ilginç bir sonuç elde edilmiştir. Periyodik iletken geometriler arasındaki mesafe “0.1” rezonans dalga boyunun altına düşürüldüğünde beklenenin aksine FSY'in geliş açısı kararlılığının önemli ölçüde azaldığı görülmüştür. Literatürde birim hücre boyutu azaldıkça FSY’lerin frekans kararlıklarının arttığı ifade edilmektedir. Periyodik iletken geometriler arasındaki mesafe “0.1” rezonans dalga boyunun altına düştüğünde, komşu hücrelerin iletken yolları arasında meydana gelen girişimler baskın hale gelmekte ve FSY’in kararsız frekans yanıtına sahip olmasına yol açmaktadır.

References

  • Azemi, S. N., Ghorbani, K., & Rowe, W. S. T. (2015). Angularly Stable Frequency Selective Surface With Miniaturized Unit Cell. Ieee Microwave and Wireless Components Letters, 25(7), 454–456.
  • Barros, V. F., Silva Segundo, F. C. G. da, Campos, A. L. P. S., Silva, S. G. da, & Gomes Neto, A. (2017). A novel simple convoluted geometry to design frequency selective surfaces for applications at ISM and UNII bands. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(2), 553–563.
  • Borgese, M., & Costa, F. (2020). A simple equivalent circuit approach for anisotropic frequency-selective surfaces and metasurfaces. IEEE Transactions on Antennas and Propagation, 68(10), 7088–7098.
  • Brandão, T. H., Filgueiras, H. R. D., Cerqueira, S. A., Mologni, J. F., & Bogoni, A. (2017). FSS-based dual-band cassegrain parabolic antenna for RadarCom applications. 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1–4.
  • Costa, F., & Monorchio, A. (2012). A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 60(6), 2740–2747.
  • Costa, F., Monorchio, A., & Manara, G. (2012). Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine, 54(4), 35–48.
  • Döken, B., & Kartal, M. (2017). Easily Optimizable Dual-Band Frequency Selective Surface Design. IEEE Antennas and Wireless Propagation Letters, 16, 2979–2982.
  • Fallah, M., Ghayekhloo, A., & Abdolali, A. (2015). Design of frequency selective band stop shield using analytical method. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 14(2), 217–228.
  • Kartal, M., Golezani, J. J., & Doken, B. (2017). A Triple Band Frequency Selective Surface Design for GSM Systems by Utilizing a Novel Synthetic Resonator. IEEE Transactions on Antennas and Propagation.
  • Langley, R. J., & Parker, E. A. (1982). Equivalent circuit model for arrays of square loops. Electronics Letters, 18(7), 294–296.
  • Li, M., Xiao, S., Bai, Y.-Y., & Wang, B.-Z. (2012). An ultrathin and broadband radar absorber using resistive FSS. IEEE Antennas and Wireless Propagation Letters, 11, 748–751. Mingbao, Y., Shaobo, Q., Jiafu, W., Jieqiu, Z., Hang, Z., Hongya, C., & Lin, Z. (2014).
  • Miniaturized Dual-Band FSS With Stable Resonance Frequencies of 2.4 GHz/5 GHz for WLAN Applications. IEEE Antennas and Wireless Propagation Letters, 13, 895–898. https://doi.org/10.1109/lawp.2014.2320931
  • Munk, B. A. (2000). Frequency Selective Surfaces - Theory and Design. John Wiley and Sons. Inc. internal-pdf://84.134.66.94/FSS Teory and Design Book.pdf
  • Narayan, S., Gulati, G., Sangeetha, B., & Nair, R. U. (2018). Novel metamaterial-element- based FSS for airborne radome applications. IEEE Transactions on Antennas and Propagation, 66(9), 4695–4707.
  • Sung, G. H. H., Sowerby, K. W., Neve, M. J., & Williamson, A. G. (2006). A frequency- selective wall for interference reduction in wireless indoor environments. IEEE Antennas and Propagation Magazine, 48(5), 29–37. https://doi.org/10.1109/Map.2006.277152
  • Using, A., Resonators, L. C., Zhang, K., Jiang, W., & Gong, S. (2017). Design Bandpass Frequency Selective Surface. IEEE Antennas and Wireless Propagation Letters, 16, 2586– 2589.
  • Varuna, A. B., Ghosh, S., & Srivastava, K. V. (2016). An Ultra Thin Polarization Insensitive nd Angularly Stable Miniaturized Frequency Selective Surface. Microwave and Optical Technology Letters, 58(11), 2713–2717.
  • Yan, M., Qu, S., Wang, J., Zhang, A., Zheng, L., Pang, Y., & Zhou, H. (2015). A Miniaturized Dual-Band FSS With Second-Order Response and Large Band Separation. IEEE Antennas and Wireless Propagation Letters, 14, 1602–1605. https://doi.org/10.1109/lawp.2015.2413942
  • Yang, Y., Li, W., Salama, K. N., & Shamim, A. (2020). Polarization Insensitive and Transparent Frequency Selective Surface for Dual Band GSM Shielding. IEEE Transactions on Antennas and Propagation, 69(5), 2779–2789.
  • Yin, W., Zhang, H., Zhong, T., & Min, X. (2018). A novel compact dual-band frequency selective surface for GSM shielding by utilizing a 2.5-dimensional structure. IEEE Transactions on Electromagnetic Compatibility, 60(6), 2057–2060.
  • Zhao, P. C., Zong, Z. Y., Wu, W., & Fang, D. G. (2016). A Convoluted Structure for Miniaturized Frequency Selective Surface and Its Equivalent Circuit for Optimization Design. IEEE Transactions on Antennas and Propagation, 64(7), 2963–2970.
Year 2023, Volume: 16 Issue: 3, 643 - 653, 31.12.2023
https://doi.org/10.18185/erzifbed.1234111

Abstract

References

  • Azemi, S. N., Ghorbani, K., & Rowe, W. S. T. (2015). Angularly Stable Frequency Selective Surface With Miniaturized Unit Cell. Ieee Microwave and Wireless Components Letters, 25(7), 454–456.
  • Barros, V. F., Silva Segundo, F. C. G. da, Campos, A. L. P. S., Silva, S. G. da, & Gomes Neto, A. (2017). A novel simple convoluted geometry to design frequency selective surfaces for applications at ISM and UNII bands. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(2), 553–563.
  • Borgese, M., & Costa, F. (2020). A simple equivalent circuit approach for anisotropic frequency-selective surfaces and metasurfaces. IEEE Transactions on Antennas and Propagation, 68(10), 7088–7098.
  • Brandão, T. H., Filgueiras, H. R. D., Cerqueira, S. A., Mologni, J. F., & Bogoni, A. (2017). FSS-based dual-band cassegrain parabolic antenna for RadarCom applications. 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1–4.
  • Costa, F., & Monorchio, A. (2012). A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 60(6), 2740–2747.
  • Costa, F., Monorchio, A., & Manara, G. (2012). Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model. IEEE Antennas and Propagation Magazine, 54(4), 35–48.
  • Döken, B., & Kartal, M. (2017). Easily Optimizable Dual-Band Frequency Selective Surface Design. IEEE Antennas and Wireless Propagation Letters, 16, 2979–2982.
  • Fallah, M., Ghayekhloo, A., & Abdolali, A. (2015). Design of frequency selective band stop shield using analytical method. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 14(2), 217–228.
  • Kartal, M., Golezani, J. J., & Doken, B. (2017). A Triple Band Frequency Selective Surface Design for GSM Systems by Utilizing a Novel Synthetic Resonator. IEEE Transactions on Antennas and Propagation.
  • Langley, R. J., & Parker, E. A. (1982). Equivalent circuit model for arrays of square loops. Electronics Letters, 18(7), 294–296.
  • Li, M., Xiao, S., Bai, Y.-Y., & Wang, B.-Z. (2012). An ultrathin and broadband radar absorber using resistive FSS. IEEE Antennas and Wireless Propagation Letters, 11, 748–751. Mingbao, Y., Shaobo, Q., Jiafu, W., Jieqiu, Z., Hang, Z., Hongya, C., & Lin, Z. (2014).
  • Miniaturized Dual-Band FSS With Stable Resonance Frequencies of 2.4 GHz/5 GHz for WLAN Applications. IEEE Antennas and Wireless Propagation Letters, 13, 895–898. https://doi.org/10.1109/lawp.2014.2320931
  • Munk, B. A. (2000). Frequency Selective Surfaces - Theory and Design. John Wiley and Sons. Inc. internal-pdf://84.134.66.94/FSS Teory and Design Book.pdf
  • Narayan, S., Gulati, G., Sangeetha, B., & Nair, R. U. (2018). Novel metamaterial-element- based FSS for airborne radome applications. IEEE Transactions on Antennas and Propagation, 66(9), 4695–4707.
  • Sung, G. H. H., Sowerby, K. W., Neve, M. J., & Williamson, A. G. (2006). A frequency- selective wall for interference reduction in wireless indoor environments. IEEE Antennas and Propagation Magazine, 48(5), 29–37. https://doi.org/10.1109/Map.2006.277152
  • Using, A., Resonators, L. C., Zhang, K., Jiang, W., & Gong, S. (2017). Design Bandpass Frequency Selective Surface. IEEE Antennas and Wireless Propagation Letters, 16, 2586– 2589.
  • Varuna, A. B., Ghosh, S., & Srivastava, K. V. (2016). An Ultra Thin Polarization Insensitive nd Angularly Stable Miniaturized Frequency Selective Surface. Microwave and Optical Technology Letters, 58(11), 2713–2717.
  • Yan, M., Qu, S., Wang, J., Zhang, A., Zheng, L., Pang, Y., & Zhou, H. (2015). A Miniaturized Dual-Band FSS With Second-Order Response and Large Band Separation. IEEE Antennas and Wireless Propagation Letters, 14, 1602–1605. https://doi.org/10.1109/lawp.2015.2413942
  • Yang, Y., Li, W., Salama, K. N., & Shamim, A. (2020). Polarization Insensitive and Transparent Frequency Selective Surface for Dual Band GSM Shielding. IEEE Transactions on Antennas and Propagation, 69(5), 2779–2789.
  • Yin, W., Zhang, H., Zhong, T., & Min, X. (2018). A novel compact dual-band frequency selective surface for GSM shielding by utilizing a 2.5-dimensional structure. IEEE Transactions on Electromagnetic Compatibility, 60(6), 2057–2060.
  • Zhao, P. C., Zong, Z. Y., Wu, W., & Fang, D. G. (2016). A Convoluted Structure for Miniaturized Frequency Selective Surface and Its Equivalent Circuit for Optimization Design. IEEE Transactions on Antennas and Propagation, 64(7), 2963–2970.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Bora Döken 0000-0002-1874-3844

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 16 Issue: 3

Cite

APA Döken, B. (2023). The Effect of the Distance Between Unit Cells on the Frequency Stability of Frequency Selective Surfaces. Erzincan University Journal of Science and Technology, 16(3), 643-653. https://doi.org/10.18185/erzifbed.1234111