Research Article
BibTex RIS Cite

Geri Dönüşümde Yapay Zekâ: Evrişimli Sinir Ağlarıyla Atık Yönetimi

Year 2025, Volume: 9 Issue: 2, 1225 - 1236, 25.05.2025
https://doi.org/10.25295/fsecon.1607759

Abstract

Kentleşme ve ekonomik kalkınmadaki hızlı büyüme, evsel atıklarda önemli bir artışa yol açarak sürdürülebilir atık yönetimi süreçlerinin geliştirilmesi gerekliliğini ortaya koymuştur. Geleneksel atık ayrıştırma yöntemleri manuel süreçlere dayanmakta, bu ise yüksek işçilik maliyetlerine ve düşük verimliliğe yol açmaktadır. Bu durum, özellikle yoğun nüfuslu bölgelerde atık yönetim sistemlerini çevresel ve ekonomik açıdan daha az sürdürülebilir kılmaktadır. Ayrıca, bu yöntemler geri dönüşüm süreçlerinin verimliliğini azaltmakta ve atıkların türlerine göre doğru şekilde ayrılmasını zorlaştırarak değerli kaynakları israf etmektedir. Manuel yöntemlerin zaman alıcı doğası ve insan hatası riski, bu süreçleri iyileştirmek için teknolojik çözümler gerektirmektedir. Bu bağlamda, yapay zekâ tabanlı teknolojiler, atık yönetimi süreçlerinde önemli bir rol üstlenmektedir. Yapay zekâ, hızlı ve doğru ayrıştırma süreçleri sayesinde insan hatalarını en aza indirerek maliyetleri düşürmekte ve verimliliği artırmaktadır. Bu çalışmada, Evrişimsel Sinir Ağı (Convolutional Neural Network-CNN) modellerini eğitmek için geri dönüştürülebilir ve organik atık olarak sınıflandırılmış 22.564 görüntü içeren halka açık bir veri kümesi kullanılmıştır. Modellerin performansı, doğrulama doğruluğu ve doğrulama kaybı gibi ölçütler kullanılarak değerlendirilmiştir. Bulgular, Optimize Edilmiş Evrişimsel Sinir Ağı (Optimized Convolutional Neural Network-OCNN) modelinin %90,41’lik bir doğrulama doğruluğu ile üstün genelleme kapasitesi elde ettiğini ve %88,26’ya ulaşan geleneksel CNN modelinden daha iyi performans gösterdiğini ortaya koymaktadır. Bu çalışma, yenilikçi yöntemler kullanarak atık yönetiminde çevresel sürdürülebilirliği artırmayı ve ekonomik verimliliği iyileştirmeyi amaçlamaktadır. Önerilen yaklaşımlar, atık sınıflandırma süreçlerinin verimliliğini artırmak, böylece doğal kaynakların korunmasını desteklemek ve daha yüksek geri dönüşüm oranlarını teşvik etmek için geliştirilmiştir.

References

  • Altikat, A., Gulbe, A. & Altikat, S. (2021). Intelligent solid waste classification using deep convolutional neural networks. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03179-4.
  • Brintha, V. P., Rekha, R., Nandhini, J., Sreekaarthick, N., Ishwaryaa, B. & Rahul, R. (2019). Automatic classification of solid waste using deep learning. Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications (881–889). Springer. https://doi.org/10.1007/978-3-030-24051-6_83.
  • Dookhee, S. (2022). Domestic solid waste classification using convolutional neural networks. 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Five, 1-6. https://doi.org/10.1109/IPAS55744.2022.10052971.
  • Faria, R., Ahmed, F., Das, A. & Dey, A. (2021). Classification of organic and solid waste using deep convolutional neural networks. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), 01-06. https://doi.org/10.1109/R10-HTC53172.2021.9641560.
  • Hobfoll, S. E. (2001). The influence of culture, community, and the nestedself in the stress rocess: Advancing conservation of resources theory. Applied Psychology: An International Review, 50(3), 337-421.
  • Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.
  • Kaggle. (2024). Waste Classification Data. https://www.kaggle.com/datasets/techsash/waste-classification-data. (Dec 20, 2024).
  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • Nowakowski, P. & Pamuła, T. (2020). Application of deep learning object classifier to improve e-waste collection planning. Waste Management, 109, 1-9.
  • Pandey, A., Jain, H., Raj, H. & Gupta, P. (2023). Identification and classification of waste using CNN in waste management. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), 1-6. https://doi.org/10.1109/I2CT57861.2023.10126312.
  • Poznyak, A., Chairez, I. & Poznyak, T. (2019). A survey on artificial neural networks application for identification and control in environmental engineering: Biological and chemical systems with uncertain models. Annual Reviews in Control, 48, 250-272.
  • Ramsurrun, N., Suddul, G., Armoogum, S. & Foogooa, R. (2021). Recyclable waste classification using computer vision and deep learning. 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), 11-15. https://doi.org/10.1109/ZINC52049.2021.9499291.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1-9). https://doi.org/10.1109/CVPR.2015.7298594.
  • Tatke, A., Patil, M., Khot, A. & Karad’s, P. J. V. (2021). Hybrid approach of garbage classification using computer vision and deep learning. International Journal of Engineering Applied Sciences and Technology, 5(10), 208-213.
  • United Nations Environment Programme. (2024). Global waste management outlook 2024. United Nations Environment Programme. Retrieved from https://www.unep.org/resources/global-waste-management-outlook-2024. (Accessed Dec 20, 2024).
  • Wang, C., Qin, J., Qu, C., Ran, X., Liu, C. & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20-29.
  • Wang, H. (2020). Garbage recognition and classification system based on convolutional neural network VGG16. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 252-255. https://doi.org/10.1109/AEMCSE50948.2020.00061.
  • World Bank. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Publications.
  • Wu, Y., Shen, X., Liu, Q., Xiao, F. & Li, C. (2021). A garbage detection and classification method based on visual scene understanding in the home environment. Complexity, 2021(1), 1055604.
  • Yenikaya, M. A., Kerse, G. & Oktaysoy, O. (2024). Artificial intelligence in the healthcare sector: Comparison of deep learning networks using chest X-ray images. Frontiers in Public Health, 12, 1386110.
  • Zhang, Q., Yang, Q., Zhang, X., Bao, Q., Su, J. & Liu, X. (2021). Waste image classification based on transfer learning and convolutional neural network. Waste Management, 135, 150-157.

Artificial Intelligence in Recycling: Waste Management with Convolutional Neural Networks

Year 2025, Volume: 9 Issue: 2, 1225 - 1236, 25.05.2025
https://doi.org/10.25295/fsecon.1607759

Abstract

The rapid growth of urbanization and economic development has led to a significant increase in household waste, highlighting the necessity for developing sustainable waste management processes. Traditional waste sorting methods are based on manual processes, leading to high labor costs and low efficiency. This makes waste management systems less environmentally and economically sustainable, especially in densely populated areas. Furthermore, these methods reduce the efficiency of recycling processes and waste valuable resources by making it difficult to correctly sort waste by type. The time-consuming nature of manual methods and the risk of human error necessitate technological solutions to improve these processes. In this context, artificial intelligence-based technologies play an important role in waste management processes. Artificial intelligence reduces costs and increases efficiency by minimizing human errors through fast and accurate sorting processes. This study employed a publicly accessible dataset containing 22,564 images classified as recyclable and organic waste to train Convolutional Neural Network (CNN) models. The models’ performance was assessed using metrics such as validation accuracy and validation loss. The findings indicate that the Optimized Convolutional Neural Network (OCNN) model achieved superior generalization capacity with a validation accuracy of 90.41%, outperforming the traditional CNN model, which attained 88.26%. This study aims to increase environmental sustainability and improve economic efficiency in waste management by using innovative methods. The proposed approaches are developed to increase the efficiency of waste classification processes, thereby supporting the conservation of natural resources and promoting higher recycling rates.

References

  • Altikat, A., Gulbe, A. & Altikat, S. (2021). Intelligent solid waste classification using deep convolutional neural networks. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03179-4.
  • Brintha, V. P., Rekha, R., Nandhini, J., Sreekaarthick, N., Ishwaryaa, B. & Rahul, R. (2019). Automatic classification of solid waste using deep learning. Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications (881–889). Springer. https://doi.org/10.1007/978-3-030-24051-6_83.
  • Dookhee, S. (2022). Domestic solid waste classification using convolutional neural networks. 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Five, 1-6. https://doi.org/10.1109/IPAS55744.2022.10052971.
  • Faria, R., Ahmed, F., Das, A. & Dey, A. (2021). Classification of organic and solid waste using deep convolutional neural networks. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), 01-06. https://doi.org/10.1109/R10-HTC53172.2021.9641560.
  • Hobfoll, S. E. (2001). The influence of culture, community, and the nestedself in the stress rocess: Advancing conservation of resources theory. Applied Psychology: An International Review, 50(3), 337-421.
  • Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.
  • Kaggle. (2024). Waste Classification Data. https://www.kaggle.com/datasets/techsash/waste-classification-data. (Dec 20, 2024).
  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
  • LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
  • Nowakowski, P. & Pamuła, T. (2020). Application of deep learning object classifier to improve e-waste collection planning. Waste Management, 109, 1-9.
  • Pandey, A., Jain, H., Raj, H. & Gupta, P. (2023). Identification and classification of waste using CNN in waste management. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), 1-6. https://doi.org/10.1109/I2CT57861.2023.10126312.
  • Poznyak, A., Chairez, I. & Poznyak, T. (2019). A survey on artificial neural networks application for identification and control in environmental engineering: Biological and chemical systems with uncertain models. Annual Reviews in Control, 48, 250-272.
  • Ramsurrun, N., Suddul, G., Armoogum, S. & Foogooa, R. (2021). Recyclable waste classification using computer vision and deep learning. 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), 11-15. https://doi.org/10.1109/ZINC52049.2021.9499291.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1-9). https://doi.org/10.1109/CVPR.2015.7298594.
  • Tatke, A., Patil, M., Khot, A. & Karad’s, P. J. V. (2021). Hybrid approach of garbage classification using computer vision and deep learning. International Journal of Engineering Applied Sciences and Technology, 5(10), 208-213.
  • United Nations Environment Programme. (2024). Global waste management outlook 2024. United Nations Environment Programme. Retrieved from https://www.unep.org/resources/global-waste-management-outlook-2024. (Accessed Dec 20, 2024).
  • Wang, C., Qin, J., Qu, C., Ran, X., Liu, C. & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20-29.
  • Wang, H. (2020). Garbage recognition and classification system based on convolutional neural network VGG16. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 252-255. https://doi.org/10.1109/AEMCSE50948.2020.00061.
  • World Bank. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Publications.
  • Wu, Y., Shen, X., Liu, Q., Xiao, F. & Li, C. (2021). A garbage detection and classification method based on visual scene understanding in the home environment. Complexity, 2021(1), 1055604.
  • Yenikaya, M. A., Kerse, G. & Oktaysoy, O. (2024). Artificial intelligence in the healthcare sector: Comparison of deep learning networks using chest X-ray images. Frontiers in Public Health, 12, 1386110.
  • Zhang, Q., Yang, Q., Zhang, X., Bao, Q., Su, J. & Liu, X. (2021). Waste image classification based on transfer learning and convolutional neural network. Waste Management, 135, 150-157.
There are 22 citations in total.

Details

Primary Language English
Subjects Industrial Economy
Journal Section Articles
Authors

Muhammed Akif Yenikaya 0000-0002-3624-722X

Publication Date May 25, 2025
Submission Date December 26, 2024
Acceptance Date March 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Yenikaya, M. A. (2025). Artificial Intelligence in Recycling: Waste Management with Convolutional Neural Networks. Fiscaoeconomia, 9(2), 1225-1236. https://doi.org/10.25295/fsecon.1607759

Creative Commons Lisansı
 Fiscaoeconomia is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.