Review
BibTex RIS Cite

Süperkapasitör: Temelleri ve malzemeleri

Year 2024, Volume: 39 Issue: 2, 1315 - 1332, 30.11.2023
https://doi.org/10.17341/gazimmfd.1141220

Abstract

Enerji depolama sistemleri içinde süperkapasitör çalışmaları son on yıldır önemli derecede artış göstermektedir. Süperkapasitörler, iki elektrot, bir ayırıcı ve bir elektrolit çözeltiden oluşan elektrokimyasal kapasitörlerdir. Süperkapasitör, kapasitör ve Li-ion bataryalardan ayıran en önemli özellikleri yüksek güç yoğunluğuna ve uzun döngü sayılarına sahip olmasıdır. Bu durum süperkapasitörlerin tüketim malzemelerinden (fotoğraf makineleri, bilgisayar donanımları, vb.) savunma sanayinde (lazer silahlarda) kullanılmak üzere geniş bir kullanım alanı sunmaktadır. Bunun yanı sıra kullanım alanları içinde günümüzde giderek gelişmekte olan elektrikli ve hibrit araç teknolojileri de bulunmaktadır. Bu araçlarda süperkapasitörlerin kullanımı bataryaların performansını arttırmaktadır. Bu çalışmada süperkapasitörlerin çalışma prensipleri detaylı olarak incelenmiştir. Bunun yanında süperkapasitör tiplerine göre oluşturulmuş elektrotların (grafen, aktif karbon, karbon nanotüp, metal oksitler, iletken polimerler) güncel elektrokimyasal performans ölçümleri incelenmiştir. Bu makale sayesinde çalışmaların daha üstün performanslı süperkapasitörler ve kullanım alanlarının geliştirilmesine katkı sağlayacağı ortaya konmaktadır.

Supporting Institution

Bursa Uludağ Üniversitesi

Project Number

FOA-2021-681

Thanks

YÖK 100/2000 ve TÜBİTAK 2211/C Öncelikli alanlar doktora bursları

References

  • Zhang Q.-Z., Zhang D., Miao Z.-C., Zhang X.-L., Chou S.-L., Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials, Small Weinheim an der Bergstrasse, Germany, 14(24), 2018.
  • Apergis N., Payne J. E., Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model, Energy Economics, 34(3), 733–738, 2012.
  • Kuhns R. J., Shaw G. H., Coal and Natural Gas, Navigating the Energy Maze, Springer International Publishing, 65–69, 2018.
  • Kuhns, R.J., Shaw, G.H., The Energy Maze, Navigating the Energy Maze, Springer International Publishing, 1-6, 2018.
  • Lin L., Ning H., Song S., Xu C., Hu N., Flexible electrochemical energy storage: The role of composite materials, Composites Science and Technology, 192, 108102, 2020.
  • TÜİK, Sera Gazı Emisyon İstatistikleri 1990-2019, https://data.tuik.gov.tr/Bulten/Index?p=Greenhouse-Gas-Emissions-Statistics-1990-2019-37196, Erişim Tarihi Ocak 20, 2021.
  • Ward J. S., Barker A., Undefined By Data: A Survey of Big Data Definitions. http://arxiv.org/pdf/1309.5821v1, Erişim Tarihi Eylül 20, 2013.
  • Ritchie, H., Roser, M., Energy, https://ourworldindata.org/energy, Erişim Tarihi Aralık 17, 2020
  • Matthews T. K. R., Wilby R. L., Murphy C., Communicating the deadly consequences of global warming for human heat stress, Proceedings of the National Academy of Sciences of the United States of America, 114(15), 3861–3866, 2017.
  • Ahmet Şenpınar, Muhsin Tunay Gençoğlu, Yenilenebilir enerji kaynaklarının çevresel etkileri açısından karşılaştırılması, Fırat Üniversitesi Doğu Araştırmaları Dergisi, 4(2), 49–54, 2006.
  • Rosner C., Roepell H., Experiences with fires in silos for coal storage in the Tiefstack CHP; Erfahrungen mit Kohlesilobraenden im Heizkraftwerk Tiefstack, 2011.
  • Wu D., Xie X., Zhang Y., Zhang D., Du W., Zhang X., Wang B., MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance, Frontiers in Materials, 7, 2020.
  • Inamuddin, Boddula, R., Ahmer, M.F., Asiri, A.M. (eds.), Conducting polymer-based energy storage materials. CRC Press Taylor & Francis Group, Boca Raton, 2019.
  • Berrueta A., Ursua A., Martin I. S., Eftekhari A., Sanchis P., Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends, IEEE Access, 7, 50869–50896, 2019.
  • Poonam, Sharma K., Arora A., Tripathi S. K., Review of supercapacitors: Materials and devices, Journal of Energy Storage, 21, 801–825, 2019.
  • Hashmi S. A., Yadav N., Singh M. K., Polymer Electrolytes for Supercapacitor and Challenges. Wiley, 231–297, 2020.
  • Yavuz A., Bedir M., Tunç A., Fabrication of heat-treated bulk copper for binder-free electrodes, Journal of Materials Science: Materials in Electronics, 31(23), 21168–21179, 2020.
  • Huang S., Zhu X., Sarkar S., Zhao Y., Challenges and opportunities for supercapacitors, APL Materials, 7(10), 100901, 2019.
  • Da Tie, Huang S., Wang J., Ma J., Zhang J., Zhao Y., Hybrid energy storage devices: Advanced electrode materials and matching principles, Energy Storage Materials, 21, 22–40, 2019.
  • González A., Goikolea E., Barrena J. A., Mysyk R., Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews, 58, 1189–1206, 2016.
  • Yuan D., Zhu Y. G., Jia C., Carbon Nanotube-Polymer Composites for Energy Storage Applications, Carbon Nanotubes-Current Progress of their Polymer Composites. InTech, 2016.
  • Yibowei M. E., Adekoya J. G., Adediran A. A., Adekomaya O., Carbon-based nano-filler in polymeric composites for supercapacitor electrode materials: a review, Environmental science and pollution research international, 28(21), 26269–26279, 2021.
  • Augustyn V., Simon P., Dunn B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, 7(5), 1597, 2014.
  • Burke A., R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta, 53(3), 1083–1091, 2007.
  • Libich J., Máca J., Vondrák J., Čech O., Sedlaříková M., Supercapacitors: Properties and applications, Journal of Energy Storage, 17, 224–227, 2018.
  • Vangari M., Pryor T., Jiang L., Supercapacitors: Review of Materials and Fabrication Methods, Journal of Energy Engineering, 139(2), 72–79, 2013.
  • Conte M., Supercapacitors Technical Requirements for New Applications, Fuel Cells, 10(5), 806–818, 2010.
  • Raza W., Ali F., Raza N., Luo Y., Kim K.-H., Yang J., Kumar S., Mehmood A., Kwon E. E., Recent advancements in supercapacitor technology, Nano Energy, 52, 441–473, 2018.
  • Frackowiak E., Carbon materials for supercapacitor application, Physical chemistry chemical physics : PCCP, 9(15), 1774–1785, 2007.
  • Joshi P.S. S. D., Supercapacitor: bacis and overview, Journal of Information and Computational Science, 9(12), 609–625, 2019.
  • Frackowiak E., Béguin F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39(6), 937–950, 2001.
  • Pandolfo A. G., Hollenkamp A. F., Carbon properties and their role in supercapacitors, Journal of Power Sources, 157(1), 11–27, 2006.
  • Bose S., Kuila T., Mishra A. K., Rajasekar R., Kim N. H., Lee J. H., Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22(3), 767–784, 2012.
  • Jiang Y., Liu J., Definitions of Pseudocapacitive Materials: A Brief review, energy & environmental materials, 2(1), 30–37, 2019.
  • Wang Y., Xia Y., Recent progress in supercapacitors: from materials design to system construction, Advanced materials (Deerfield Beach, Fla.), 25(37), 5336–5342, 2013.
  • Iijima S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56–58, 1991.
  • Rinzler A. G., Hafner J. H., Nikolaev P., Nordlander P., Colbert D. T., Smalley R. E., Lou L., Kim S. G., Tománek D., Unraveling Nanotubes: Field Emission from an Atomic Wire, Science, 269(5230), 1550–1553, 1995.
  • Shimoda H., Gao B., Tang X. P., Kleinhammes A., Fleming L., Wu Y., Zhou O., Lithium intercalation into etched single-wall carbon nanotubes, Physica B: Condensed Matter, 323(1-4), 133–134, 2002.
  • Talapatra S., Kar S., Pal S. K., Vajtai R., Ci L., Victor P., Shaijumon M. M., Kaur S., Nalamasu O., Ajayan P. M., Direct growth of aligned carbon nanotubes on bulk metals, Nature Nanotechnology, 1(2), 112–116, 2006.
  • Frackowiak E., Metenier K., Bertagna V., Beguin F., Supercapacitor electrodes from multiwalled carbon nanotubes, Applied Physics Letters, 77(15), 2421–2423, 2000.
  • Frackowiak E., Delpeux S., Jurewicz K., Szostak K., Cazorla-Amoros D., Béguin F., Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters, 361(1-2), 35–41, 2002.
  • Simon P., Gogotsi Y., Materials for electrochemical capacitors, Nature materials, 7(11), 845–854, 2008.
  • Miller J. R., Simon P., Materials science. Electrochemical capacitors for energy management, Science, 321(5889), 651–652, 2008.
  • Geim A. K., Novoselov K. S., The rise of graphene, Nature materials, 6(3), 183–191, 2007.
  • Wang C., Muni M., Strauss V., Borenstein A., Chang X., Huang A., Qu S., Sung K., Gilham T., Kaner R. B., Graphene's Role in Emerging Trends of Capacitive Energy Storage, Small, Weinheim an der Bergstrasse, Germany, 17(48), e2006875, 2021.
  • Pauling, L., The Nature of the Chemical Bond, Cornell University Press, 1960.
  • Xia J., Chen F., Li J., Tao N., Measurement of the quantum capacitance of graphene, Nature Nanotechnology, 4(8), 505–509, 2009.
  • Wei Z., Zhao Q., He M., Su S., Tian Y., Wang C., Li S., Ping D., jing B., Hu G., Self-propagating high–temperature synthesis of porous graphene by magnesiothermic reaction as high–performance electrochemical electrode material, Journal of Alloys and Compounds, 900, 163552, 2022.
  • Shanmugapriya S., Surendran S., Lee Y. S., Selvan R. K., Improved surface charge storage properties of Prosopis juliflora (pods) derived onion–like porous carbon through redox-mediated reactions for electric double layer capacitors, Applied Surface Science, 492, 896–908, 2019.
  • Li X., Liang P., Zhang J., Liu B., Electrochemical performance of Pleurotus ostreatus-derived carbon prepared by different methods as electrode in supercapacitor, Materials Chemistry and Physics, 278, 125623, 2022.
  • Nazari M., Rahmanifar M. S., Noori A., Li W., Zhang C., Mousavi M. F., The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors, Journal of Power Sources, 494, 229741, 2021.
  • Pilathottathil S., Kavil J., Shahin Thayyil M., Boosting ion dynamics by developing graphitic carbon Nitride/Carbon hybrid electrode materials for ionogel supercapacitor, Materials Science and Engineering: B, 276, 115573, 2022.
  • Wang T., He X., Gong W., Kou Z., Yao Y., Fulbright S., Reardon K. F., Fan M., Three-dimensional, heteroatom-enriched, porous carbon nanofiber flexible paper for free-standing supercapacitor electrode materials derived from microalgae oil, Fuel Processing Technology, 225, 107055, 2022.
  • Cheng F., Qiu W., Yang X., Gu X., Hou W., Lu W., Ultrahigh-power supercapacitors from commercial activated carbon enabled by compositing with carbon nanomaterials, Electrochimica Acta, 403, 139728, 2022.
  • Zhang W., Liu B., Yang M., Liu Y., Li H., Liu P., Biowaste derived porous carbon sponge for high performance supercapacitors, Journal of Materials Science & Technology, 95, 105–113, 2021.
  • Chen C.-C., Huang Y.-H., Chien H.-J., Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors, Sustainable Chemistry and Pharmacy, 24, 100535, 2021.
  • Li T., Ma R., Xu X., Sun S., Lin J., Microwave-induced preparation of porous graphene nanosheets derived from biomass for supercapacitors, Microporous and Mesoporous Materials, 324, 111277, 2021.
  • Samynaathan V., Iyer S. R., Kesavan K. S., Michael M. S., High-performance electric double-layer capacitor fabricated with nanostructured carbon black-paint pigment as an electrode, Carbon Letters, 31(1), 137–146, 2021.
  • Abedi Z., Leistenschneider D., Chen W., Ivey D. G., Superior Performance of Electrochemical Double Layer Supercapacitor Made with Asphaltene Derived Activated Carbon Fibers, Energy Technology, 8(12), 2000588, 2020.
  • Ma C., Wu L., Zheng L., Gan R., Fan Q., Song Y., Shi J., Preparation and capacitive performance of modified carbon black-doped porous carbon nanofibers, Journal of Nanoparticle Research, 21(2), 2019.
  • Zhang P., Wang K., Liu X., Wang L., Gao W., Research on the structure-performance relationship of thermal reduced graphene oxide based supercapacitors, Journal of Materials Science, 57(1), 517–525, 2022.
  • Wang W., Zhang W., Wang G., Li C., Electrophoresis-microwave synthesis of S,N-doped graphene foam for high-performance supercapacitors, Journal of Materials Chemistry A, 9(28), 15766–15775, 2021.
  • Zhu M., Liu H., Cao Q., Zheng H., Xu D., Guo H., Wang S., Li Y., Zhou J., Electrospun Lignin-Based Carbon Nanofibers as Supercapacitor Electrodes, ACS Sustainable Chemistry & Engineering, 8(34), 12831–12841, 2020.
  • Li X., Tang Y., Song J., Yang W., Wang M., Zhu C., Zhao W., Zheng J., Lin Y., Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor, Carbon, 129, 236–244, 2018.
  • Zhou L., Wang J., Liu Z., Yang J., Chen M., Zheng Y., Wu W., Gao Z., Xiong C., Facile self-assembling of three-dimensional graphene/solvent free carbon nanotubes fluid framework for high performance supercapacitors, Journal of Alloys and Compounds, 820, 153157, 2020.
  • Aijun LI, Fangfang LIU, Xiuyun Chuan, Yang Yang, Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes, Journal of Inorganic Materials, 36(7), 711–717, 2021.
  • Qin C., Cao L., Fang Z., Lai F., Yao M., Lin Z., Zhang P., Preparation of 3D carbon conductive composite derived from nitrogen-rich resin/MWCNT and its application in supercapacitors, Ionics, 27(4), 1757–1767, 2021.
  • Conway, B.E., Electrochemical Supercapacitors. Springer US, Boston, MA, 1999.
  • Wang G., Zhang L., Zhang J., A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41(2), 797–828, 2012.
  • Zhi M., Xiang C., Li J., Li M., Wu N., Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5(1), 72–88, 2013.
  • Sarno M., Nanotechnology in energy storage: the supercapacitors, In: Catalysis, Green Chemistry and Sustainable Energy, Elsevier, 179, 431–458., 2020.
  • Sharma P., Bhatti T. S., A review on electrochemical double-layer capacitors, Energy Conversion and Management, 51(12), 2901–2912, 2010.
  • Subramanıan V., Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ionics, 175(1-4), 511–515, 2004.
  • Jayalakshmi M., Balasubramanian K., Simple capacitors to supercapacitors-an overview, Int. J. Electrochem. Sci, 3(11), 1196–1217, 2008.
  • A Review on Conducting Polymers-Based Composites for Energy Storage Application, Journal of Chemical Reviews, 1(1), 19–34, 2019.
  • Zhou Y., Qin Z.-Y., Li L., Zhang Y., Wei Y.-L., Wang L.-F., Zhu M.-F., Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials, Electrochimica Acta, 55(12), 3904–3908, 2010.
  • Xu Y., Wang J., Sun W., Wang S., Capacitance properties of poly(3,4-ethylenedioxythiophene)/polypyrrole composites, Journal of Power Sources, 159(1), 370–373, 2006.
  • Fan L.Z., Maier J., High-performance polypyrrole electrode materials for redox supercapacitors, Electrochemistry Communications, 8(6), 937–940, 2006.
  • Gupta V., Miura N., High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline, Materials Letters, 60(12), 1466–1469, 2006.
  • Bian Z., Zhang Z., Zhao K., Li K., Xiao Q., Li K., Cao H., Fang Z., Jiang F., Li H., Zhu Y., 3D net carbon-based cobalt sulfides for high-performance supercapacitors by a simple, green and convenient method, Materials Letters, 311, 131539, 2022.
  • Hsieh C.-E., Chang C., Gupta S., Hsiao C.-H., Lee C.-Y., Tai N.-H., Binder-free CoMn2O4/carbon nanotubes composite electrodes for high-performance asymmetric supercapacitor, Journal of Alloys and Compounds, 897, 163231, 2022.
  • Faraji M., Abedini A., Fabrication of electrochemically interconnected MoO3/GO/MWCNTs/graphite sheets for high performance all-solid-state symmetric supercapacitor, International Journal of Hydrogen Energy, 44(5), 2741–2751, 2019.
  • Song J., Sui Y., Zhao Q., Ye Y., Qin C., Chen X., Song K., A reinforced concrete structure rGO/CNTs/Fe 2 O 3 /PEDOT:PSS paper electrode with excellent wettability and flexibility for supercapacitors, New Journal of Chemistry, 45(32), 14483–14494, 2021.
  • Qi P., Wang H., Lu Y., Chen M., Liu G., Li W., Huang C., Tang Y., Ammonia-induced N-doped NiCoO2 nanosheet array on Ni foam as a cathode of supercapacitor with excellent rate performance, Journal of Alloys and Compounds, 895, 162535, 2022.
  • Chen X., Chang P., Zhang S., Guan L., Ren G., Tao J., Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability, Nanotechnology, 33(8), 2021.
  • Teli A. M., Bhat T. S., Beknalkar S. A., Mane S. M., Chaudhary L. S., Patil D. S., Pawar S. A., Efstathiadis H., Cheol Shin J., Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor, Chemical Engineering Journal, 430, 133138, 2022.
  • Liu X., Sun J., Liu Y., Liu D., Xu C., Chen H., The CuCo2O4/CuO composite-based microspheres serve as a battery-type cathode material for highly capable hybrid supercapacitors, Journal of Alloys and Compounds, 894, 162566, 2022.
  • Mondal A. K., Xu D., Wu S., Zou Q., Huang F., Ni Y., Design of Fe3+-Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications, Biomacromolecules, 2022.
  • Y S N., H G., S V., H V., M B., M V., H D., Single-step hydrothermal synthesis of ZnO/NiO hexagonal nanorods for high-performance supercapacitor application, Materials Science in Semiconductor Processing, 142, 106429, 2022.
  • Peçenek H., Dokan F. K., Onses M. S., Yılmaz E., Sahmetlioglu E., Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes, Materials Research Bulletin, 149, 111745, 2022.
  • Choudhary R. B., Ansari S., Mesoporous complexion and multi-channeled charge storage action of PIn-rGO-TiO2 ternary hybrid materials for supercapacitor applications, Journal of Energy Storage, 46, 103912, 2022.
  • Chen J., Xia Z., Li H., Li Q., Zhang Y., Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition, Electrochemica Acta, 166, 174–182, 2015.
  • Zhou Q., Wei T., Yue J., Sheng L., Fan Z., Polyaniline nanofibers confined into graphene oxide architecture for high-performance supercapacitors, Electrochemica Acta, 291, 234–241, 2018.
  • Rajesh M., Raj C. J., Manikandan R., Kim B. C., Park S. Y., Yu K. H., A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes, Materials Today Energy, 6, 96–104, 2017.
  • Garcia-Torres J., Crean C., Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT:PSS fibres, Materials & Design, 155, 194–202, 2018.
  • Gupta A., Sardana S., Dalal J., Lather S., Maan A. S., Tripathi R., Punia R., Singh K., Ohlan A., Nanostructured Polyaniline/Graphene/Fe 2 O 3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material, ACS Applied Energy Materials, 3(7), 6434–6446, 2020.
  • Chen Y., Jing C., Fu X., Shen M., Li K., Liu X., Yao H.-C., Zhang Y., Yao K. X., Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors, Chemical Engineering Journal, 384, 123367, 2020.
  • Zhu J., Shi W., Xiao N., Rui X., Tan H., Lu X., Hng H. H., Ma J., Yan Q., Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors, ACS applied materials & interfaces, 4(5), 2769–2774, 2012.
  • Zhu X., Hou D., Tao H., Li M., Simply synthesized N-doped carbon supporting Fe3O4 nanocomposite for high performance supercapacitor, Journal of Alloys and Compounds, 821, 153580, 2020.
  • Wu S., Zhu Y., Highly densified carbon electrode materials towards practical supercapacitor devices, Science China Materials, 60(1), 25–38, 2017.
  • Dubal D. P., Ayyad O., Ruiz V., Gómez-Romero P., Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chemical Society Reviews, 44(7), 1777–1790, 2015.
  • Xu K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews, 104(10), 4303–4417, 2004.
  • Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J., A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44(21), 7484–7539, 2015.
  • Guillot S. L., Usrey M. L., Peña Hueso A., Hamers R. J., Characterization of the Intrinsic Thermal and High-Voltage Stability of Organosilicon-Containing Electrolytes, ECS Meeting Abstracts, MA2018-01(3), 573, 2018.
  • Lewandowski A., Olejniczak A., Galinski M., Stepniak I., Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, Journal of Power Sources, 195(17), 5814–5819, 2010.
  • Scibioh A., Viswanathan B., Materials for Supercapacitor Applications. Elsevier, 2020.
  • Xiong T., Tan T. L., Lu L., Lee W. S. V., Xue J., Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor, Advanced Energy Materials, 8(14), 1702630, 2018.
  • Kim B. K., Sy S., Yu A., Zhang J., Electrochemical Supercapacitors for Energy Storage and Conversion. In: Handbook of Clean Energy Systems, John Wiley & Sons, Ltd, Chichester, UK, 1-25, 2015.
  • Armand M., Endres F., MacFarlane D. R., Ohno H., Scrosati B., Ionic-liquid materials for the electrochemical challenges of the future, Nature materials, 8(8), 621–629, 2009.
  • Ulihin A. S., Mateyshina Y., Uvarov N. F., All-solid-state asymmetric supercapacitors with solid composite electrolytes, Solid State Ionics, 251, 62–65, 2013.
  • Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, New York, 350(6263), 938–943, 2015.
  • Pal B., Yang S., Ramesh S., Thangadurai V., Jose R., Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Advances, 1(10), 3807–3835, 2019.
  • Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R., Electrochemical Performance of MnO 2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors, The Journal of Physical Chemistry C, 113(31), 14020–14027, 2009.
  • Qu Q. T., Shi Y., Tian S., Chen Y. H., Wu Y. P., Holze R., A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources, 194(2), 1222–1225, 2009.
  • Wang D., A high-performance carbon-carbon(C/C) Quasi-Solid-State Supercapacitor with Conducting Gel Electrolyte, International Journal of Electrochemical Science, 2530–2543, 2018.
  • Pan Q., Tong N., He N., Liu Y., Shim E., Pourdeyhimi B., Gao W., Electrospun Mat of Poly(vinyl alcohol)/Graphene Oxide for Superior Electrolyte Performance, ACS applied materials & interfaces, 10(9), 7927–7934, 2018.
  • Philippe Azais, Johann Lejosne, Matthieu PICOT, Electrochemical supercapacitor device made from an electrolyte comprising, as a conductive salt, at least one salt made from an alkali element other than lithium Patent WO2014173891A1, France, 2014
  • Xia L., Yu L., Di Hu, Chen G. Z., Electrolytes for electrochemical energy storage, Materials Chemistry Frontiers, 1(4), 584–618, 2017.
  • Mastragostino M., Soavi F., Arbizzani C., Electrochemical Supercapacitors. In: van Schalkwijk, W.A., Scrosati, B. (eds.) Advances in Lithium-Ion Batteries, pp. 481–505. Springer US, Boston, MA, 2002.
  • Hashemi M., Rahmanifar M. S., El-Kady M. F., Noori A., Mousavi M. F., Kaner R. B., The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit, Nano Energy, 44, 489–498, 2018.
  • Haque M., Li Q., Smith A. D., Kuzmenko V., Köhler E., Lundgren P., Enoksson P., Thermal influence on the electrochemical behavior of a supercapacitor containing an ionic liquid electrolyte, Electrochimica Acta, 263, 249–260, 2018.
  • Rogers R. D., Voth G. A., Ionic liquids, Accounts of chemical research, 40(11), 1077–1078, 2007.
  • Shulga Y. M., Baskakov S. A., Smirnov V. A., Shulga N. Y., Belay K. G., Gutsev G. L., Graphene oxide films as separators of polyaniline-based supercapacitors, Journal of Power Sources, 245, 33–36, 2014.
  • Yu H., Tang Q., Wu J., Lin Y., Fan L., Huang M., Lin J., Li Y., Yu F., Using eggshell membrane as a separator in supercapacitor, Journal of Power Sources, 206, 463–468, 2012.
Year 2024, Volume: 39 Issue: 2, 1315 - 1332, 30.11.2023
https://doi.org/10.17341/gazimmfd.1141220

Abstract

Project Number

FOA-2021-681

References

  • Zhang Q.-Z., Zhang D., Miao Z.-C., Zhang X.-L., Chou S.-L., Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials, Small Weinheim an der Bergstrasse, Germany, 14(24), 2018.
  • Apergis N., Payne J. E., Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model, Energy Economics, 34(3), 733–738, 2012.
  • Kuhns R. J., Shaw G. H., Coal and Natural Gas, Navigating the Energy Maze, Springer International Publishing, 65–69, 2018.
  • Kuhns, R.J., Shaw, G.H., The Energy Maze, Navigating the Energy Maze, Springer International Publishing, 1-6, 2018.
  • Lin L., Ning H., Song S., Xu C., Hu N., Flexible electrochemical energy storage: The role of composite materials, Composites Science and Technology, 192, 108102, 2020.
  • TÜİK, Sera Gazı Emisyon İstatistikleri 1990-2019, https://data.tuik.gov.tr/Bulten/Index?p=Greenhouse-Gas-Emissions-Statistics-1990-2019-37196, Erişim Tarihi Ocak 20, 2021.
  • Ward J. S., Barker A., Undefined By Data: A Survey of Big Data Definitions. http://arxiv.org/pdf/1309.5821v1, Erişim Tarihi Eylül 20, 2013.
  • Ritchie, H., Roser, M., Energy, https://ourworldindata.org/energy, Erişim Tarihi Aralık 17, 2020
  • Matthews T. K. R., Wilby R. L., Murphy C., Communicating the deadly consequences of global warming for human heat stress, Proceedings of the National Academy of Sciences of the United States of America, 114(15), 3861–3866, 2017.
  • Ahmet Şenpınar, Muhsin Tunay Gençoğlu, Yenilenebilir enerji kaynaklarının çevresel etkileri açısından karşılaştırılması, Fırat Üniversitesi Doğu Araştırmaları Dergisi, 4(2), 49–54, 2006.
  • Rosner C., Roepell H., Experiences with fires in silos for coal storage in the Tiefstack CHP; Erfahrungen mit Kohlesilobraenden im Heizkraftwerk Tiefstack, 2011.
  • Wu D., Xie X., Zhang Y., Zhang D., Du W., Zhang X., Wang B., MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance, Frontiers in Materials, 7, 2020.
  • Inamuddin, Boddula, R., Ahmer, M.F., Asiri, A.M. (eds.), Conducting polymer-based energy storage materials. CRC Press Taylor & Francis Group, Boca Raton, 2019.
  • Berrueta A., Ursua A., Martin I. S., Eftekhari A., Sanchis P., Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends, IEEE Access, 7, 50869–50896, 2019.
  • Poonam, Sharma K., Arora A., Tripathi S. K., Review of supercapacitors: Materials and devices, Journal of Energy Storage, 21, 801–825, 2019.
  • Hashmi S. A., Yadav N., Singh M. K., Polymer Electrolytes for Supercapacitor and Challenges. Wiley, 231–297, 2020.
  • Yavuz A., Bedir M., Tunç A., Fabrication of heat-treated bulk copper for binder-free electrodes, Journal of Materials Science: Materials in Electronics, 31(23), 21168–21179, 2020.
  • Huang S., Zhu X., Sarkar S., Zhao Y., Challenges and opportunities for supercapacitors, APL Materials, 7(10), 100901, 2019.
  • Da Tie, Huang S., Wang J., Ma J., Zhang J., Zhao Y., Hybrid energy storage devices: Advanced electrode materials and matching principles, Energy Storage Materials, 21, 22–40, 2019.
  • González A., Goikolea E., Barrena J. A., Mysyk R., Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews, 58, 1189–1206, 2016.
  • Yuan D., Zhu Y. G., Jia C., Carbon Nanotube-Polymer Composites for Energy Storage Applications, Carbon Nanotubes-Current Progress of their Polymer Composites. InTech, 2016.
  • Yibowei M. E., Adekoya J. G., Adediran A. A., Adekomaya O., Carbon-based nano-filler in polymeric composites for supercapacitor electrode materials: a review, Environmental science and pollution research international, 28(21), 26269–26279, 2021.
  • Augustyn V., Simon P., Dunn B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, 7(5), 1597, 2014.
  • Burke A., R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta, 53(3), 1083–1091, 2007.
  • Libich J., Máca J., Vondrák J., Čech O., Sedlaříková M., Supercapacitors: Properties and applications, Journal of Energy Storage, 17, 224–227, 2018.
  • Vangari M., Pryor T., Jiang L., Supercapacitors: Review of Materials and Fabrication Methods, Journal of Energy Engineering, 139(2), 72–79, 2013.
  • Conte M., Supercapacitors Technical Requirements for New Applications, Fuel Cells, 10(5), 806–818, 2010.
  • Raza W., Ali F., Raza N., Luo Y., Kim K.-H., Yang J., Kumar S., Mehmood A., Kwon E. E., Recent advancements in supercapacitor technology, Nano Energy, 52, 441–473, 2018.
  • Frackowiak E., Carbon materials for supercapacitor application, Physical chemistry chemical physics : PCCP, 9(15), 1774–1785, 2007.
  • Joshi P.S. S. D., Supercapacitor: bacis and overview, Journal of Information and Computational Science, 9(12), 609–625, 2019.
  • Frackowiak E., Béguin F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39(6), 937–950, 2001.
  • Pandolfo A. G., Hollenkamp A. F., Carbon properties and their role in supercapacitors, Journal of Power Sources, 157(1), 11–27, 2006.
  • Bose S., Kuila T., Mishra A. K., Rajasekar R., Kim N. H., Lee J. H., Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem., 22(3), 767–784, 2012.
  • Jiang Y., Liu J., Definitions of Pseudocapacitive Materials: A Brief review, energy & environmental materials, 2(1), 30–37, 2019.
  • Wang Y., Xia Y., Recent progress in supercapacitors: from materials design to system construction, Advanced materials (Deerfield Beach, Fla.), 25(37), 5336–5342, 2013.
  • Iijima S., Helical microtubules of graphitic carbon, Nature, 354(6348), 56–58, 1991.
  • Rinzler A. G., Hafner J. H., Nikolaev P., Nordlander P., Colbert D. T., Smalley R. E., Lou L., Kim S. G., Tománek D., Unraveling Nanotubes: Field Emission from an Atomic Wire, Science, 269(5230), 1550–1553, 1995.
  • Shimoda H., Gao B., Tang X. P., Kleinhammes A., Fleming L., Wu Y., Zhou O., Lithium intercalation into etched single-wall carbon nanotubes, Physica B: Condensed Matter, 323(1-4), 133–134, 2002.
  • Talapatra S., Kar S., Pal S. K., Vajtai R., Ci L., Victor P., Shaijumon M. M., Kaur S., Nalamasu O., Ajayan P. M., Direct growth of aligned carbon nanotubes on bulk metals, Nature Nanotechnology, 1(2), 112–116, 2006.
  • Frackowiak E., Metenier K., Bertagna V., Beguin F., Supercapacitor electrodes from multiwalled carbon nanotubes, Applied Physics Letters, 77(15), 2421–2423, 2000.
  • Frackowiak E., Delpeux S., Jurewicz K., Szostak K., Cazorla-Amoros D., Béguin F., Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters, 361(1-2), 35–41, 2002.
  • Simon P., Gogotsi Y., Materials for electrochemical capacitors, Nature materials, 7(11), 845–854, 2008.
  • Miller J. R., Simon P., Materials science. Electrochemical capacitors for energy management, Science, 321(5889), 651–652, 2008.
  • Geim A. K., Novoselov K. S., The rise of graphene, Nature materials, 6(3), 183–191, 2007.
  • Wang C., Muni M., Strauss V., Borenstein A., Chang X., Huang A., Qu S., Sung K., Gilham T., Kaner R. B., Graphene's Role in Emerging Trends of Capacitive Energy Storage, Small, Weinheim an der Bergstrasse, Germany, 17(48), e2006875, 2021.
  • Pauling, L., The Nature of the Chemical Bond, Cornell University Press, 1960.
  • Xia J., Chen F., Li J., Tao N., Measurement of the quantum capacitance of graphene, Nature Nanotechnology, 4(8), 505–509, 2009.
  • Wei Z., Zhao Q., He M., Su S., Tian Y., Wang C., Li S., Ping D., jing B., Hu G., Self-propagating high–temperature synthesis of porous graphene by magnesiothermic reaction as high–performance electrochemical electrode material, Journal of Alloys and Compounds, 900, 163552, 2022.
  • Shanmugapriya S., Surendran S., Lee Y. S., Selvan R. K., Improved surface charge storage properties of Prosopis juliflora (pods) derived onion–like porous carbon through redox-mediated reactions for electric double layer capacitors, Applied Surface Science, 492, 896–908, 2019.
  • Li X., Liang P., Zhang J., Liu B., Electrochemical performance of Pleurotus ostreatus-derived carbon prepared by different methods as electrode in supercapacitor, Materials Chemistry and Physics, 278, 125623, 2022.
  • Nazari M., Rahmanifar M. S., Noori A., Li W., Zhang C., Mousavi M. F., The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors, Journal of Power Sources, 494, 229741, 2021.
  • Pilathottathil S., Kavil J., Shahin Thayyil M., Boosting ion dynamics by developing graphitic carbon Nitride/Carbon hybrid electrode materials for ionogel supercapacitor, Materials Science and Engineering: B, 276, 115573, 2022.
  • Wang T., He X., Gong W., Kou Z., Yao Y., Fulbright S., Reardon K. F., Fan M., Three-dimensional, heteroatom-enriched, porous carbon nanofiber flexible paper for free-standing supercapacitor electrode materials derived from microalgae oil, Fuel Processing Technology, 225, 107055, 2022.
  • Cheng F., Qiu W., Yang X., Gu X., Hou W., Lu W., Ultrahigh-power supercapacitors from commercial activated carbon enabled by compositing with carbon nanomaterials, Electrochimica Acta, 403, 139728, 2022.
  • Zhang W., Liu B., Yang M., Liu Y., Li H., Liu P., Biowaste derived porous carbon sponge for high performance supercapacitors, Journal of Materials Science & Technology, 95, 105–113, 2021.
  • Chen C.-C., Huang Y.-H., Chien H.-J., Waste tire-derived porous nitrogen-doped carbon black as an electrode material for supercapacitors, Sustainable Chemistry and Pharmacy, 24, 100535, 2021.
  • Li T., Ma R., Xu X., Sun S., Lin J., Microwave-induced preparation of porous graphene nanosheets derived from biomass for supercapacitors, Microporous and Mesoporous Materials, 324, 111277, 2021.
  • Samynaathan V., Iyer S. R., Kesavan K. S., Michael M. S., High-performance electric double-layer capacitor fabricated with nanostructured carbon black-paint pigment as an electrode, Carbon Letters, 31(1), 137–146, 2021.
  • Abedi Z., Leistenschneider D., Chen W., Ivey D. G., Superior Performance of Electrochemical Double Layer Supercapacitor Made with Asphaltene Derived Activated Carbon Fibers, Energy Technology, 8(12), 2000588, 2020.
  • Ma C., Wu L., Zheng L., Gan R., Fan Q., Song Y., Shi J., Preparation and capacitive performance of modified carbon black-doped porous carbon nanofibers, Journal of Nanoparticle Research, 21(2), 2019.
  • Zhang P., Wang K., Liu X., Wang L., Gao W., Research on the structure-performance relationship of thermal reduced graphene oxide based supercapacitors, Journal of Materials Science, 57(1), 517–525, 2022.
  • Wang W., Zhang W., Wang G., Li C., Electrophoresis-microwave synthesis of S,N-doped graphene foam for high-performance supercapacitors, Journal of Materials Chemistry A, 9(28), 15766–15775, 2021.
  • Zhu M., Liu H., Cao Q., Zheng H., Xu D., Guo H., Wang S., Li Y., Zhou J., Electrospun Lignin-Based Carbon Nanofibers as Supercapacitor Electrodes, ACS Sustainable Chemistry & Engineering, 8(34), 12831–12841, 2020.
  • Li X., Tang Y., Song J., Yang W., Wang M., Zhu C., Zhao W., Zheng J., Lin Y., Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor, Carbon, 129, 236–244, 2018.
  • Zhou L., Wang J., Liu Z., Yang J., Chen M., Zheng Y., Wu W., Gao Z., Xiong C., Facile self-assembling of three-dimensional graphene/solvent free carbon nanotubes fluid framework for high performance supercapacitors, Journal of Alloys and Compounds, 820, 153157, 2020.
  • Aijun LI, Fangfang LIU, Xiuyun Chuan, Yang Yang, Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes, Journal of Inorganic Materials, 36(7), 711–717, 2021.
  • Qin C., Cao L., Fang Z., Lai F., Yao M., Lin Z., Zhang P., Preparation of 3D carbon conductive composite derived from nitrogen-rich resin/MWCNT and its application in supercapacitors, Ionics, 27(4), 1757–1767, 2021.
  • Conway, B.E., Electrochemical Supercapacitors. Springer US, Boston, MA, 1999.
  • Wang G., Zhang L., Zhang J., A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41(2), 797–828, 2012.
  • Zhi M., Xiang C., Li J., Li M., Wu N., Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5(1), 72–88, 2013.
  • Sarno M., Nanotechnology in energy storage: the supercapacitors, In: Catalysis, Green Chemistry and Sustainable Energy, Elsevier, 179, 431–458., 2020.
  • Sharma P., Bhatti T. S., A review on electrochemical double-layer capacitors, Energy Conversion and Management, 51(12), 2901–2912, 2010.
  • Subramanıan V., Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ionics, 175(1-4), 511–515, 2004.
  • Jayalakshmi M., Balasubramanian K., Simple capacitors to supercapacitors-an overview, Int. J. Electrochem. Sci, 3(11), 1196–1217, 2008.
  • A Review on Conducting Polymers-Based Composites for Energy Storage Application, Journal of Chemical Reviews, 1(1), 19–34, 2019.
  • Zhou Y., Qin Z.-Y., Li L., Zhang Y., Wei Y.-L., Wang L.-F., Zhu M.-F., Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials, Electrochimica Acta, 55(12), 3904–3908, 2010.
  • Xu Y., Wang J., Sun W., Wang S., Capacitance properties of poly(3,4-ethylenedioxythiophene)/polypyrrole composites, Journal of Power Sources, 159(1), 370–373, 2006.
  • Fan L.Z., Maier J., High-performance polypyrrole electrode materials for redox supercapacitors, Electrochemistry Communications, 8(6), 937–940, 2006.
  • Gupta V., Miura N., High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline, Materials Letters, 60(12), 1466–1469, 2006.
  • Bian Z., Zhang Z., Zhao K., Li K., Xiao Q., Li K., Cao H., Fang Z., Jiang F., Li H., Zhu Y., 3D net carbon-based cobalt sulfides for high-performance supercapacitors by a simple, green and convenient method, Materials Letters, 311, 131539, 2022.
  • Hsieh C.-E., Chang C., Gupta S., Hsiao C.-H., Lee C.-Y., Tai N.-H., Binder-free CoMn2O4/carbon nanotubes composite electrodes for high-performance asymmetric supercapacitor, Journal of Alloys and Compounds, 897, 163231, 2022.
  • Faraji M., Abedini A., Fabrication of electrochemically interconnected MoO3/GO/MWCNTs/graphite sheets for high performance all-solid-state symmetric supercapacitor, International Journal of Hydrogen Energy, 44(5), 2741–2751, 2019.
  • Song J., Sui Y., Zhao Q., Ye Y., Qin C., Chen X., Song K., A reinforced concrete structure rGO/CNTs/Fe 2 O 3 /PEDOT:PSS paper electrode with excellent wettability and flexibility for supercapacitors, New Journal of Chemistry, 45(32), 14483–14494, 2021.
  • Qi P., Wang H., Lu Y., Chen M., Liu G., Li W., Huang C., Tang Y., Ammonia-induced N-doped NiCoO2 nanosheet array on Ni foam as a cathode of supercapacitor with excellent rate performance, Journal of Alloys and Compounds, 895, 162535, 2022.
  • Chen X., Chang P., Zhang S., Guan L., Ren G., Tao J., Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability, Nanotechnology, 33(8), 2021.
  • Teli A. M., Bhat T. S., Beknalkar S. A., Mane S. M., Chaudhary L. S., Patil D. S., Pawar S. A., Efstathiadis H., Cheol Shin J., Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor, Chemical Engineering Journal, 430, 133138, 2022.
  • Liu X., Sun J., Liu Y., Liu D., Xu C., Chen H., The CuCo2O4/CuO composite-based microspheres serve as a battery-type cathode material for highly capable hybrid supercapacitors, Journal of Alloys and Compounds, 894, 162566, 2022.
  • Mondal A. K., Xu D., Wu S., Zou Q., Huang F., Ni Y., Design of Fe3+-Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications, Biomacromolecules, 2022.
  • Y S N., H G., S V., H V., M B., M V., H D., Single-step hydrothermal synthesis of ZnO/NiO hexagonal nanorods for high-performance supercapacitor application, Materials Science in Semiconductor Processing, 142, 106429, 2022.
  • Peçenek H., Dokan F. K., Onses M. S., Yılmaz E., Sahmetlioglu E., Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes, Materials Research Bulletin, 149, 111745, 2022.
  • Choudhary R. B., Ansari S., Mesoporous complexion and multi-channeled charge storage action of PIn-rGO-TiO2 ternary hybrid materials for supercapacitor applications, Journal of Energy Storage, 46, 103912, 2022.
  • Chen J., Xia Z., Li H., Li Q., Zhang Y., Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition, Electrochemica Acta, 166, 174–182, 2015.
  • Zhou Q., Wei T., Yue J., Sheng L., Fan Z., Polyaniline nanofibers confined into graphene oxide architecture for high-performance supercapacitors, Electrochemica Acta, 291, 234–241, 2018.
  • Rajesh M., Raj C. J., Manikandan R., Kim B. C., Park S. Y., Yu K. H., A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes, Materials Today Energy, 6, 96–104, 2017.
  • Garcia-Torres J., Crean C., Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT:PSS fibres, Materials & Design, 155, 194–202, 2018.
  • Gupta A., Sardana S., Dalal J., Lather S., Maan A. S., Tripathi R., Punia R., Singh K., Ohlan A., Nanostructured Polyaniline/Graphene/Fe 2 O 3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material, ACS Applied Energy Materials, 3(7), 6434–6446, 2020.
  • Chen Y., Jing C., Fu X., Shen M., Li K., Liu X., Yao H.-C., Zhang Y., Yao K. X., Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors, Chemical Engineering Journal, 384, 123367, 2020.
  • Zhu J., Shi W., Xiao N., Rui X., Tan H., Lu X., Hng H. H., Ma J., Yan Q., Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors, ACS applied materials & interfaces, 4(5), 2769–2774, 2012.
  • Zhu X., Hou D., Tao H., Li M., Simply synthesized N-doped carbon supporting Fe3O4 nanocomposite for high performance supercapacitor, Journal of Alloys and Compounds, 821, 153580, 2020.
  • Wu S., Zhu Y., Highly densified carbon electrode materials towards practical supercapacitor devices, Science China Materials, 60(1), 25–38, 2017.
  • Dubal D. P., Ayyad O., Ruiz V., Gómez-Romero P., Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chemical Society Reviews, 44(7), 1777–1790, 2015.
  • Xu K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews, 104(10), 4303–4417, 2004.
  • Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J., A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews, 44(21), 7484–7539, 2015.
  • Guillot S. L., Usrey M. L., Peña Hueso A., Hamers R. J., Characterization of the Intrinsic Thermal and High-Voltage Stability of Organosilicon-Containing Electrolytes, ECS Meeting Abstracts, MA2018-01(3), 573, 2018.
  • Lewandowski A., Olejniczak A., Galinski M., Stepniak I., Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes, Journal of Power Sources, 195(17), 5814–5819, 2010.
  • Scibioh A., Viswanathan B., Materials for Supercapacitor Applications. Elsevier, 2020.
  • Xiong T., Tan T. L., Lu L., Lee W. S. V., Xue J., Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor, Advanced Energy Materials, 8(14), 1702630, 2018.
  • Kim B. K., Sy S., Yu A., Zhang J., Electrochemical Supercapacitors for Energy Storage and Conversion. In: Handbook of Clean Energy Systems, John Wiley & Sons, Ltd, Chichester, UK, 1-25, 2015.
  • Armand M., Endres F., MacFarlane D. R., Ohno H., Scrosati B., Ionic-liquid materials for the electrochemical challenges of the future, Nature materials, 8(8), 621–629, 2009.
  • Ulihin A. S., Mateyshina Y., Uvarov N. F., All-solid-state asymmetric supercapacitors with solid composite electrolytes, Solid State Ionics, 251, 62–65, 2013.
  • Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, New York, 350(6263), 938–943, 2015.
  • Pal B., Yang S., Ramesh S., Thangadurai V., Jose R., Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Advances, 1(10), 3807–3835, 2019.
  • Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R., Electrochemical Performance of MnO 2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors, The Journal of Physical Chemistry C, 113(31), 14020–14027, 2009.
  • Qu Q. T., Shi Y., Tian S., Chen Y. H., Wu Y. P., Holze R., A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2, Journal of Power Sources, 194(2), 1222–1225, 2009.
  • Wang D., A high-performance carbon-carbon(C/C) Quasi-Solid-State Supercapacitor with Conducting Gel Electrolyte, International Journal of Electrochemical Science, 2530–2543, 2018.
  • Pan Q., Tong N., He N., Liu Y., Shim E., Pourdeyhimi B., Gao W., Electrospun Mat of Poly(vinyl alcohol)/Graphene Oxide for Superior Electrolyte Performance, ACS applied materials & interfaces, 10(9), 7927–7934, 2018.
  • Philippe Azais, Johann Lejosne, Matthieu PICOT, Electrochemical supercapacitor device made from an electrolyte comprising, as a conductive salt, at least one salt made from an alkali element other than lithium Patent WO2014173891A1, France, 2014
  • Xia L., Yu L., Di Hu, Chen G. Z., Electrolytes for electrochemical energy storage, Materials Chemistry Frontiers, 1(4), 584–618, 2017.
  • Mastragostino M., Soavi F., Arbizzani C., Electrochemical Supercapacitors. In: van Schalkwijk, W.A., Scrosati, B. (eds.) Advances in Lithium-Ion Batteries, pp. 481–505. Springer US, Boston, MA, 2002.
  • Hashemi M., Rahmanifar M. S., El-Kady M. F., Noori A., Mousavi M. F., Kaner R. B., The use of an electrocatalytic redox electrolyte for pushing the energy density boundary of a flexible polyaniline electrode to a new limit, Nano Energy, 44, 489–498, 2018.
  • Haque M., Li Q., Smith A. D., Kuzmenko V., Köhler E., Lundgren P., Enoksson P., Thermal influence on the electrochemical behavior of a supercapacitor containing an ionic liquid electrolyte, Electrochimica Acta, 263, 249–260, 2018.
  • Rogers R. D., Voth G. A., Ionic liquids, Accounts of chemical research, 40(11), 1077–1078, 2007.
  • Shulga Y. M., Baskakov S. A., Smirnov V. A., Shulga N. Y., Belay K. G., Gutsev G. L., Graphene oxide films as separators of polyaniline-based supercapacitors, Journal of Power Sources, 245, 33–36, 2014.
  • Yu H., Tang Q., Wu J., Lin Y., Fan L., Huang M., Lin J., Li Y., Yu F., Using eggshell membrane as a separator in supercapacitor, Journal of Power Sources, 206, 463–468, 2012.
There are 124 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Çağatay Özada 0000-0003-1503-1232

Merve Ünal 0000-0003-2208-181X

Murat Yazıcı 0000-0002-8720-7594

Project Number FOA-2021-681
Early Pub Date November 27, 2023
Publication Date November 30, 2023
Submission Date July 6, 2022
Acceptance Date June 25, 2023
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Özada, Ç., Ünal, M., & Yazıcı, M. (2023). Süperkapasitör: Temelleri ve malzemeleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1315-1332. https://doi.org/10.17341/gazimmfd.1141220
AMA Özada Ç, Ünal M, Yazıcı M. Süperkapasitör: Temelleri ve malzemeleri. GUMMFD. November 2023;39(2):1315-1332. doi:10.17341/gazimmfd.1141220
Chicago Özada, Çağatay, Merve Ünal, and Murat Yazıcı. “Süperkapasitör: Temelleri Ve Malzemeleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 2 (November 2023): 1315-32. https://doi.org/10.17341/gazimmfd.1141220.
EndNote Özada Ç, Ünal M, Yazıcı M (November 1, 2023) Süperkapasitör: Temelleri ve malzemeleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 1315–1332.
IEEE Ç. Özada, M. Ünal, and M. Yazıcı, “Süperkapasitör: Temelleri ve malzemeleri”, GUMMFD, vol. 39, no. 2, pp. 1315–1332, 2023, doi: 10.17341/gazimmfd.1141220.
ISNAD Özada, Çağatay et al. “Süperkapasitör: Temelleri Ve Malzemeleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (November 2023), 1315-1332. https://doi.org/10.17341/gazimmfd.1141220.
JAMA Özada Ç, Ünal M, Yazıcı M. Süperkapasitör: Temelleri ve malzemeleri. GUMMFD. 2023;39:1315–1332.
MLA Özada, Çağatay et al. “Süperkapasitör: Temelleri Ve Malzemeleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, 2023, pp. 1315-32, doi:10.17341/gazimmfd.1141220.
Vancouver Özada Ç, Ünal M, Yazıcı M. Süperkapasitör: Temelleri ve malzemeleri. GUMMFD. 2023;39(2):1315-32.