Research Article
BibTex RIS Cite
Year 2024, Volume: 39 Issue: 2, 1029 - 1036, 30.11.2023
https://doi.org/10.17341/gazimmfd.1207967

Abstract

References

  • 1. Taormina G., Sciancalepore C., Messori M., Bondioli F., 3D printing processes for photocurable polymeric materials : technologies, materials, and future trends, Journal of Applied Biomaterials and Functional Materials, 16 (3), 151-160, 2018.
  • 2. Farahani R.D., Dubé M., Therriault D., Three-Dimensional Printing of Multifunctional Nanocomposites : Manufacturing Techniques and Applications, Advanced Materials, 28 (28), 5794–5821, 2016.
  • 3. Nath S.D., Nilufar S., An Overview of Additive Manufacturing of Polymers and Associated Composites, Polymers, 12 (11), 2719, 2020.
  • 4. Wu H., Fahy W.P., Kim S., Zhao N., Pilato L., Kafi A., Bateman S., Koo J.H., Progress in Materials Science Recent developments in polymers/polymer nanocomposites for additive manufacturing, Progress in Materials Science, 111, 100638, 2020.
  • 5. Jasiuk I., Abueidda D.W., Kozuch C., Pang S., Su F.Y., Mckittrick J., An Overview on Additive Manufacturing of Polymers, Journal of Materials, 70 (3), 275–283, 2018.
  • 6. Alghamdi S.S., John S., Choudhury N.R., Dutta N.K., Additive Manufacturing of Polymer Materials : Progress , Promise and Challenges, Polymers, 13 (5), 1–39, 2021.
  • 7. Lammens N., Kersemans M., De Baere I., Van Paepegem W., On the visco-elasto- plastic response of additively manufactured polyamide-12 (PA-12) through selective laser sintering, Polymer Testing, 57, 149–155, 2017.
  • 8. Schneider J., Kumar S., Multiscale characterization and constitutive parameters identification of polyamide (PA12) processed via selective laser sintering, Polymer Testing, 86, 106357, 2020.
  • 9. Starr T.L., Gornet T.J., Usher J.S., The effect of process conditions on mechanical properties of laser-sintered nylon, Rapid Prototyping Journal, 17, 418–423, 2011.
  • 10. Amel H., Moztarzadeh H., Rongong J., Hopkinson N., Investigating the behavior of laser-sintered Nylon 12 parts subject to dynamic loading, Journal of Materials Research, 29, 1852–1858, 2014.
  • 11. Salazar A., Rico A., Rodríguez J., Segurado Escudero J., Seltzer R., Martin De La Escalera Cutillas F., Fatigue crack growth of SLS polyamide 12: effect of reinforcement and temperature, Composites Part B: Engineering, 59, 285–292, 2014.
  • 12. Özbay Kısasöz, B., Kısasöz, A., An Overview of the Quality Characteristics Challenges in Additive Manufacturing, Handbook of Post-Processing in Additive Manufacturing, Sing G., Kumar, R., Sandhu, K., Pei, E., Singh, S., CRC Press, Boca Raton, 181-192, 2023.
  • 13. Shiva Kumar K., Chennakesava Reddy A., Investigation on mechanical properties and wear performance of Nylon-6/Boron Nitride polymer composites by using Taguchi Technique, Results in Materials, 5, 100070, 2020.
  • 14. Kumar S.S., Kanagaraj G., Investigation on mechanical performances of PA6 and Al2O3 reinforced PA6 polymer composites, International Journal of Advanced Engineering Technology, 7 (1), 69-74, 2016.
  • 15. Hasan M.M., Zhou Y., Mahfuz H., Jeelani S., Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6, Materials Science and Engineering A, 429 (1–2), 181–188, 2006.
  • 16. Karan Agarwal N.A., Sirinivas R., Reddy A.C., Enhancement in mechanical behavior of nylon/teflon composites by addition of nano iron oxide (γ-Fe2O3), International Journal of Science and REsearch, 4 (5), 927-932, 2015.
  • 17. Martelli V., Toccafondi N., Ventura G., Low-temperature thermal conductivity of Nylon-6/Cu nanoparticles, Physica B: Condensed Matter, 405 (20), 4247–4249, 2010.
  • 18. Hui C., Qingyu C., Jing W., Xiaohong X., Hongbo L., Zhanjun L., Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber, Applied Surface Science, 441, 538–545, 2018.
  • 19. Rafiq R., Cai D., Jin J., Song M., Increasing the toughness of nylon 12 by the incorporation of functionalized graphene, Carbon, 48 (15), 4309–4314, 2010.
  • 20. Bekem A., Özbay B., Bulduk M., Effect of dendritic copper powder addition to polyamide 12 in selective laser sinetering, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 421-432, 2020.
  • 21. Li M., Chen A., Lin X., Wu J., Chen S., Cheng L., Chen Y., Wen S., Li C., Shi Y., Lightweight mullite ceramics with controlled porosity and enhanced properties prepared by SLS using mechanical mixed FAHSs/polyamide12 composites, Ceramics International, 45 (16), 20803-20809, 2019.
  • 22. Jucan O.D., Gadalean R.V., Chicinaş H.F., Hering M., Balc N., Popa C.O., Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts, International Journal of Refractory Metals and Hard Materials, 96, 105498, 2021.
  • 23. Özbay Kısasöz B., Serhatlı İ.E., Bulduk M.E., Selective Laser Sintering Manufacturing and Characterization of Lightweight PA 12 Polymer Composites with Different Hollow Microsphere dditives, Journal of Materials Engineering and Performence, 31, 4049–4059, 2022.
  • 24. Balzereit S., Proes F., Altstadt V., Emmelmann C., Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers, Additive Manufacturing, 23, 347–354, 2018.
  • 25. https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/formiga-p-110-velocis
  • 26. Erol M., Kısasöz A., Yaman P., Karabeyoğlu S.S., Barut U., A study on high temperature dry sliding wear of AA7050-T4 and effects of the test temperature on microstructure, corrosion behavior, hardness and electrical conductivity, Materials Today Communications, 31, 103410, 2022.
  • 27. Konieczny J., Chmielnicki B., Tomiczek A., Evaluation of selected properties of PA6-copper/graphite composite, Journal of Achievements in Materials and Manufacturing Engineering, 60 (1), 23-30, 2013.
  • 28. Özbay Kısasöz B., Koç E., Kısasöz A., Karabeyoğlu S.S., Dry sliding wear behavior of energy density dependent PA 12/Cu composites produced by selective laser sintering, Materials Testing, 65 (2), 303-312, 2023.
  • 29. Shibata K., Fukuda M., Yamaguchi T., Hokkirigawa K., Relationship between sliding-induced wear and severity of sliding contact for polyamide 66 filled with hard filler, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231 (6), 783-790, 2017.
  • 30. Wagner T., Höfer T., Knies S., Eyerer P., Laser Sintering of High Temperatur e Resistant Polymers with Carbon Black Additives, International Polymer Processing, 19 (4), 395–401, 2004.
  • 31. Wu Y., Yu Z., Liu X., Tribological performance of in-situ epoxy composites filled with micro-sized ZrB2 particles, Composites Part B, 123, 148-153, 2017.

Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi

Year 2024, Volume: 39 Issue: 2, 1029 - 1036, 30.11.2023
https://doi.org/10.17341/gazimmfd.1207967

Abstract

Bu çalışmada eklemeli imalat yöntemlerinden biri olan Seçici Lazer Sinterleme (SLS) yöntemi kullanılarak seramik takviyeli PA 12 matrisli kompozit malzemeler üretilmiş ve kompozit malzemelerin aşınma davranışları incelenmiştir. Kompozit malzemelerin SLS ile üretilmesinde iki farklı enerji yoğunluğu değeri kullanılmıştır. Üretilen kompozit malzemelere kuru aşınma deneyleri uygulanmıştır. Aşınma testleri 25 mm/sn ve 100 mm/sn hız değerlerinde ve 5 N ile 20 N aşınma yükü değerlerinde uygulanmıştır. Aşınma test yükü arttıkça aşınma oranı artmış, ayrıca kompozit malzeme üretiminde enerji yoğunluğu değerindeki artışın aşınma özelliklerini olumsuz etkilediği belirlenmiştir.

References

  • 1. Taormina G., Sciancalepore C., Messori M., Bondioli F., 3D printing processes for photocurable polymeric materials : technologies, materials, and future trends, Journal of Applied Biomaterials and Functional Materials, 16 (3), 151-160, 2018.
  • 2. Farahani R.D., Dubé M., Therriault D., Three-Dimensional Printing of Multifunctional Nanocomposites : Manufacturing Techniques and Applications, Advanced Materials, 28 (28), 5794–5821, 2016.
  • 3. Nath S.D., Nilufar S., An Overview of Additive Manufacturing of Polymers and Associated Composites, Polymers, 12 (11), 2719, 2020.
  • 4. Wu H., Fahy W.P., Kim S., Zhao N., Pilato L., Kafi A., Bateman S., Koo J.H., Progress in Materials Science Recent developments in polymers/polymer nanocomposites for additive manufacturing, Progress in Materials Science, 111, 100638, 2020.
  • 5. Jasiuk I., Abueidda D.W., Kozuch C., Pang S., Su F.Y., Mckittrick J., An Overview on Additive Manufacturing of Polymers, Journal of Materials, 70 (3), 275–283, 2018.
  • 6. Alghamdi S.S., John S., Choudhury N.R., Dutta N.K., Additive Manufacturing of Polymer Materials : Progress , Promise and Challenges, Polymers, 13 (5), 1–39, 2021.
  • 7. Lammens N., Kersemans M., De Baere I., Van Paepegem W., On the visco-elasto- plastic response of additively manufactured polyamide-12 (PA-12) through selective laser sintering, Polymer Testing, 57, 149–155, 2017.
  • 8. Schneider J., Kumar S., Multiscale characterization and constitutive parameters identification of polyamide (PA12) processed via selective laser sintering, Polymer Testing, 86, 106357, 2020.
  • 9. Starr T.L., Gornet T.J., Usher J.S., The effect of process conditions on mechanical properties of laser-sintered nylon, Rapid Prototyping Journal, 17, 418–423, 2011.
  • 10. Amel H., Moztarzadeh H., Rongong J., Hopkinson N., Investigating the behavior of laser-sintered Nylon 12 parts subject to dynamic loading, Journal of Materials Research, 29, 1852–1858, 2014.
  • 11. Salazar A., Rico A., Rodríguez J., Segurado Escudero J., Seltzer R., Martin De La Escalera Cutillas F., Fatigue crack growth of SLS polyamide 12: effect of reinforcement and temperature, Composites Part B: Engineering, 59, 285–292, 2014.
  • 12. Özbay Kısasöz, B., Kısasöz, A., An Overview of the Quality Characteristics Challenges in Additive Manufacturing, Handbook of Post-Processing in Additive Manufacturing, Sing G., Kumar, R., Sandhu, K., Pei, E., Singh, S., CRC Press, Boca Raton, 181-192, 2023.
  • 13. Shiva Kumar K., Chennakesava Reddy A., Investigation on mechanical properties and wear performance of Nylon-6/Boron Nitride polymer composites by using Taguchi Technique, Results in Materials, 5, 100070, 2020.
  • 14. Kumar S.S., Kanagaraj G., Investigation on mechanical performances of PA6 and Al2O3 reinforced PA6 polymer composites, International Journal of Advanced Engineering Technology, 7 (1), 69-74, 2016.
  • 15. Hasan M.M., Zhou Y., Mahfuz H., Jeelani S., Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6, Materials Science and Engineering A, 429 (1–2), 181–188, 2006.
  • 16. Karan Agarwal N.A., Sirinivas R., Reddy A.C., Enhancement in mechanical behavior of nylon/teflon composites by addition of nano iron oxide (γ-Fe2O3), International Journal of Science and REsearch, 4 (5), 927-932, 2015.
  • 17. Martelli V., Toccafondi N., Ventura G., Low-temperature thermal conductivity of Nylon-6/Cu nanoparticles, Physica B: Condensed Matter, 405 (20), 4247–4249, 2010.
  • 18. Hui C., Qingyu C., Jing W., Xiaohong X., Hongbo L., Zhanjun L., Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber, Applied Surface Science, 441, 538–545, 2018.
  • 19. Rafiq R., Cai D., Jin J., Song M., Increasing the toughness of nylon 12 by the incorporation of functionalized graphene, Carbon, 48 (15), 4309–4314, 2010.
  • 20. Bekem A., Özbay B., Bulduk M., Effect of dendritic copper powder addition to polyamide 12 in selective laser sinetering, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 421-432, 2020.
  • 21. Li M., Chen A., Lin X., Wu J., Chen S., Cheng L., Chen Y., Wen S., Li C., Shi Y., Lightweight mullite ceramics with controlled porosity and enhanced properties prepared by SLS using mechanical mixed FAHSs/polyamide12 composites, Ceramics International, 45 (16), 20803-20809, 2019.
  • 22. Jucan O.D., Gadalean R.V., Chicinaş H.F., Hering M., Balc N., Popa C.O., Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts, International Journal of Refractory Metals and Hard Materials, 96, 105498, 2021.
  • 23. Özbay Kısasöz B., Serhatlı İ.E., Bulduk M.E., Selective Laser Sintering Manufacturing and Characterization of Lightweight PA 12 Polymer Composites with Different Hollow Microsphere dditives, Journal of Materials Engineering and Performence, 31, 4049–4059, 2022.
  • 24. Balzereit S., Proes F., Altstadt V., Emmelmann C., Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers, Additive Manufacturing, 23, 347–354, 2018.
  • 25. https://www.eos.info/en/additive-manufacturing/3d-printing-plastic/eos-polymer-systems/formiga-p-110-velocis
  • 26. Erol M., Kısasöz A., Yaman P., Karabeyoğlu S.S., Barut U., A study on high temperature dry sliding wear of AA7050-T4 and effects of the test temperature on microstructure, corrosion behavior, hardness and electrical conductivity, Materials Today Communications, 31, 103410, 2022.
  • 27. Konieczny J., Chmielnicki B., Tomiczek A., Evaluation of selected properties of PA6-copper/graphite composite, Journal of Achievements in Materials and Manufacturing Engineering, 60 (1), 23-30, 2013.
  • 28. Özbay Kısasöz B., Koç E., Kısasöz A., Karabeyoğlu S.S., Dry sliding wear behavior of energy density dependent PA 12/Cu composites produced by selective laser sintering, Materials Testing, 65 (2), 303-312, 2023.
  • 29. Shibata K., Fukuda M., Yamaguchi T., Hokkirigawa K., Relationship between sliding-induced wear and severity of sliding contact for polyamide 66 filled with hard filler, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 231 (6), 783-790, 2017.
  • 30. Wagner T., Höfer T., Knies S., Eyerer P., Laser Sintering of High Temperatur e Resistant Polymers with Carbon Black Additives, International Polymer Processing, 19 (4), 395–401, 2004.
  • 31. Wu Y., Yu Z., Liu X., Tribological performance of in-situ epoxy composites filled with micro-sized ZrB2 particles, Composites Part B, 123, 148-153, 2017.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Burçin Özbay Kısasöz 0000-0001-5479-8474

İbrahim Tütük 0000-0001-7792-5480

Ebubekir Koç 0000-0002-9069-715X

Sencer Süreyya Karabeyoğlu 0000-0001-8253-6412

Alptekin Kısasöz 0000-0001-8531-8162

Early Pub Date November 24, 2023
Publication Date November 30, 2023
Submission Date November 29, 2022
Acceptance Date May 27, 2023
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Özbay Kısasöz, B., Tütük, İ., Koç, E., Karabeyoğlu, S. S., et al. (2023). Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1029-1036. https://doi.org/10.17341/gazimmfd.1207967
AMA Özbay Kısasöz B, Tütük İ, Koç E, Karabeyoğlu SS, Kısasöz A. Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi. GUMMFD. November 2023;39(2):1029-1036. doi:10.17341/gazimmfd.1207967
Chicago Özbay Kısasöz, Burçin, İbrahim Tütük, Ebubekir Koç, Sencer Süreyya Karabeyoğlu, and Alptekin Kısasöz. “Seçici Lazer Sinterleme yöntemiyle üretilen PA 12 Matrisli Seramik Takviyeli Kompozitlerin aşınma davranışının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 2 (November 2023): 1029-36. https://doi.org/10.17341/gazimmfd.1207967.
EndNote Özbay Kısasöz B, Tütük İ, Koç E, Karabeyoğlu SS, Kısasöz A (November 1, 2023) Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 1029–1036.
IEEE B. Özbay Kısasöz, İ. Tütük, E. Koç, S. S. Karabeyoğlu, and A. Kısasöz, “Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi”, GUMMFD, vol. 39, no. 2, pp. 1029–1036, 2023, doi: 10.17341/gazimmfd.1207967.
ISNAD Özbay Kısasöz, Burçin et al. “Seçici Lazer Sinterleme yöntemiyle üretilen PA 12 Matrisli Seramik Takviyeli Kompozitlerin aşınma davranışının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (November 2023), 1029-1036. https://doi.org/10.17341/gazimmfd.1207967.
JAMA Özbay Kısasöz B, Tütük İ, Koç E, Karabeyoğlu SS, Kısasöz A. Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi. GUMMFD. 2023;39:1029–1036.
MLA Özbay Kısasöz, Burçin et al. “Seçici Lazer Sinterleme yöntemiyle üretilen PA 12 Matrisli Seramik Takviyeli Kompozitlerin aşınma davranışının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, 2023, pp. 1029-36, doi:10.17341/gazimmfd.1207967.
Vancouver Özbay Kısasöz B, Tütük İ, Koç E, Karabeyoğlu SS, Kısasöz A. Seçici lazer sinterleme yöntemiyle üretilen PA 12 matrisli seramik takviyeli kompozitlerin aşınma davranışının incelenmesi. GUMMFD. 2023;39(2):1029-36.