Research Article
BibTex RIS Cite

Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu

Year 2024, Volume: 39 Issue: 2, 883 - 898, 30.11.2023
https://doi.org/10.17341/gazimmfd.1216742

Abstract

Modern dağıtım şebekeleri farklı ihtiyaçları karşılayacak şekilde evrimleşmektedir. Temelde bu değişimin kaynağı artan enerji talebi ve arz güvenliğidir. Artan enerji ihtiyacını karşılamak amacıyla dağıtım şebekelerinde pek çok paralel fider çıkışı, arz güvenliğinin artırılması noktasında ise yoğun yeraltı kablosu kullanımı mevcuttur. Tek faz toprak arızası sırasında arızanın yaşanmadığı fiderlerde yeraltı kablolarının kapasitif akımlarından dolayı görülen sıfır sıra akımlar hatalı açmaya sebebiyet vermektedir.
Büyükşehirlerde kullanılan dağıtım şebekeleri uzun mesafeli yeraltı kablosuna ve yüksek miktarda paralel fider çıkışlarına sahip olması ile dikkat çekmektedir. Ayrıca farklı tip nötr topraklama yöntemleri uygulanmaktadır. Bu durum hatalı açma probleminin giderilmesi noktasında tek tip koruma yönteminin ve röle ayarının uygulanabilirliğini ortadan kaldırmaktadır. Bu nedenle dağıtım topolojisine özgü fider bazlı toprak koruma hibritasyonu gerçekleştirilmelidir.
Bu çalışmada, yöntem hibritasyonu geliştirilmiş ve 62-baralı dağıtım şebekesinde farklı hat topolojileri ve farklı nötr topraklama yöntemleri için tek faz toprak arızası sonucu yaşanan hatalı açmaları gidermek amacıyla uygulanmıştır. Yapılan uygulama ile fider bazlı hibrit koruma yöntemleri ve bu yöntemlere ait röle ayar değerleri önerilerek yöntemin geçerliliği gösterilmiştir.

References

  • 1. Maza-Ortega J.M., Zarco-Soto F.J., Gkavanoudis S., Tampakis D., Demoulias C., A short communication to define the overcurrent protection system of the CIGRE European benchmark distribution networks for RES penetration studies, Electra. Eng., 104 (3), 1331–1336, 2022.
  • 2. Pandakov K., Hoidalen H.K., Traetteberg S., An Additional Criterion for Faulty Feeder Selection during Ground Faults in Compensated Distribution Networks, IEEE Trans Power Delivery, 33 (6), 2930–2937, 2018.
  • 3. Wan Q., Zheng S., Shi C., Feeder selection method for full cable networks earth faults based on improved K-means, IET Gener. Transm. Distrib., 16 (9), 3837–3848, 2022.
  • 4. M. B. Atsever M.B., Ö. Karacasu Ö., Hocaoğlu M.H., Determination of proper angle settings for resistance grounded distribution systems for directional earth fault relays, 2020 12th International Conference on Electrical and Electronics Engineering, Bursa-Türkiye, 113-118, 26-28 Kasım 2020.
  • 5. Kennedy J., Ciufo P., Agalgaonkar A., Protection analysis tool for distribution networks with a high embedded generation penetration, Int. J. Electr. Power Energy Syst., 107 (1),605–614, 2019.
  • 6. Kou G., Jordan J, Cockerham B., Patterson R., P. Vansant P, Negative-Sequence Current Injection of Transmission Solar Farms, IEEE Trans Power Delivery, 35 (6), 2740–2743, 2020.
  • 7. Wang X., Gao J., Wei X., Zeng Z., Wei Y., Kheshti M., Single Line to Ground Fault Detection in a Non-Effectively Grounded Distribution Network, IEEE Trans Power Delivery, 33 (6), 3173–3186, 2018.
  • 8. Roberts J., Altuve H.J., Hou D., Review of Ground Fault Protection Methods for Grounded, Ungrounded, and Compensated Distribution Systems, SEL: Pullman, WA, USA, 2005.
  • 9. Li Z.J., Lin S., Guo M.F., Tang J., A Decentralized Fault Section Location Method Using Autoencoder and Feature Fusion in Resonant Grounding Distribution Systems, IEEE Syst. J, 16 (4), 5698-5707, 2022.
  • 10. IEEE, C62.92.1-2016 - IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems--Part I: Introduction, 2017.
  • 11. Hänninen S., Lehtonen M., Characteristics of earth faults in electrical distribution networks with high impedance earthing, Electr. Power Syst. Res., 44 (3), 155-161, 1998.
  • 12. Wang X. Zhang H., Wu Q., Terzija V., Xie W., Fang C., Location of Single Phase to Ground Faults in Distribution Networks Based on Synchronous Transients Energy Analysis, IEEE Trans Smart Grid, 11 (1),774–785, 2020.
  • 13. Pandakov K., Høidalen H.K., Marvik J.I., Misoperation analysis of steady-state and transient methods on earth fault locating in compensated distribution networks, Sustainable Energy Grids Networks, 15 (1), 34–42, 2018,
  • 14. Roberts J., Stulo T.L., Reyes A., Sympathetic tripping problem analysis and solutions, SEL: Pullman, WA, USA, 2002.
  • 15. Bakar A.H.A, B. Ooi B., Govindasamy P., Tan C., llias H.A., Mokhlis H., Directional overcurrent and earth-fault protections for a biomass microgrid system in Malaysia, Int. J. of Electra. Power Energy System., 55 (1), 581–591, 2014.
  • 16. Jaramillo Serna J.J., López-Lezama J.M, Alternative methodology to calculate the directional characteristic settings of directional overcurrent relays in transmission and distribution networks, Energies, 12 (9), 1-25, 2019.
  • 17. Vaca S., Fonseca A., Chapi F., Pérez-Yauli F., “A new methodology for the analysis and optimal setting of directional polarisation methods for overcurrent elements in line protection applications,” IET Gener. Transm. Distrib., 16 (5), 882–896, 2022.
  • 18. Birla D., Maheshwari R.P., Gupta H.O., An Approach to Tackle the Threat of Sympathy Trips in Directional Overcurrent Relay Coordination, IEEE Trans Power Delivery, 22 (2), 851–858, 2007.
  • 19. Sabra H., Ibrahim D.K., Gilany M., Field experience with sympathetic tripping in distribution networks: problems and solutions, The Journal of Engineering, 2018 (15), 1181–1185, 2018.
  • 20. Atsever M.B., Hocaoglu M.H, Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks, 57th International Universities Power Engineering Conference, İstanbul, Türkiye, 1-6, 30 Agustos 2 Eylül 2022.
  • 21. Andruszkiewicz J., Lorenc J., Staszak B., Weychan A., Zięba B., Overcurrent protection against multi-phase faults in MV networks based on negative and zero sequence criteria, Int. J. of Electra. Power Energy System, 134 (1),107449, 2022.
  • 22. Paul D., Phase-Ground Fault Current Analysis and Protection of a High-Resistance Grounded Power System, IEEE Trans. Ind. Appl., 56 (4), 3306–3314, 2020
  • 23. Gatta F.M., Geri A., Lauria S., M. Maccioni M., Analytical prediction of abnormal temporary overvoltages due to ground faults in MV networks, Electr. Power Syst. Res., 77 (10), 1305–1313, 2007.
  • 24. Cerretti A., Gatta F.M., Geri A., Lauria S., MacCioni M, Valtorta G., Ground fault temporary overvoltages in MV networks: Evaluation and experimental tests, IEEE Trans Power Delivery, 27 (3), 1592–1600, 2012.
  • 25. Atsever M.B., O. Karacasu O., Hocaoglu M.H., Determination of Proper Angle Settings in Resistance Grounded Distribution Systems for Directional Earth Fault Relays, Turkish J of Electra. Power and Energy Syst., 1 (1), 26–32, 2021.
  • 26. Paul D., High-resistance grounded power system, IEEE Trans Ind Appl., 51 (6), 5261–5269, 2015.
  • 27. Horak J., Directional Overcurrent Relaying (67) Concepts, 59th Annual Conference for Protective Relay Engineers, TX-USA, 164–176, 4-6 Nisan 2006.
  • 28. IEEE Working Group D-3, Considerations in Choosing Directional Polarizing Methods for Ground Overcurrent Elements in Line Protection Applications, IEEE, 1-67, 2014.
  • 29. Akdağ O., Yeroğlu C., Adaptive protection method with fault current limiting mechanism for directional over current relays coordination problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1751-1765, 2022.
  • 30. Atsever M.B., Hocaoglu M.H., Mitigation of sympathy trips in highly cabled non-effectively earthed radial distribution systems via MINLP, Electr. Power Syst. Res., 220 (1), 109377, 2023.
  • 31. Bakar A.H.A, Mokhlis H., Illias H.A, Chong P.L., The study of directional overcurrent relay and directional earth-fault protection application for 33kV underground cable system in Malaysia, Int. J. of Electra. Power Energy System, 40 (1), 113–119, 2012.
  • 32. Vaca S., Fonsec A., Chapi F., Pérez‐Yauli F., A new methodology for the analysis and optimal setting of directional polarisation methods for overcurrent elements in line protection applications, IET Gener. Transm. Distrib., 16 (5), 882-896, 2021.
  • 33. Atsever M.B., U. Deveci U., Yılmaz S.C, Hocaoglu M.H., Zero-Sequence Based Fault Location in Non-Effectively Earthed Distribution Systems; Zero-Sequence Based Fault Location in Non-Effectively Earthed Distribution Systems, 57th International Universities Power Engineering Conference, İstanbul, Türkiye, 1-6, 30 Ağustos 2 Eylül 2022.
  • 34. Lukowicz M., Rebizant W., Kereit M., New approach to intermittent earth fault detection with admittance criteria, Int. J. of Electra. Power Energy System, 134 (1),107449, 2022.
  • 35. Farughian A., Kumpulainen L., Kauhaniemi K., Pettissalo S., Sallinen V., Technical requirements for practical implementation of fault passage indication, in Proceedings of 2021 IEEE PES Innovative Smart Grid Technologies Europe, Espo-Finlandiya, 1-6, 18-21 Ekim 2021.
  • 36. Atsever M.B., Karacasu O., Hocaoglu M.H., Earth Fault Protection Selectivity Issues on Reactance Earthed Distribution System, 13th International Conference on Electrical and Electronics Engineering (ELECO), Bursa-Türkiye, 257-262, 25-27 Kasım 2021.
Year 2024, Volume: 39 Issue: 2, 883 - 898, 30.11.2023
https://doi.org/10.17341/gazimmfd.1216742

Abstract

References

  • 1. Maza-Ortega J.M., Zarco-Soto F.J., Gkavanoudis S., Tampakis D., Demoulias C., A short communication to define the overcurrent protection system of the CIGRE European benchmark distribution networks for RES penetration studies, Electra. Eng., 104 (3), 1331–1336, 2022.
  • 2. Pandakov K., Hoidalen H.K., Traetteberg S., An Additional Criterion for Faulty Feeder Selection during Ground Faults in Compensated Distribution Networks, IEEE Trans Power Delivery, 33 (6), 2930–2937, 2018.
  • 3. Wan Q., Zheng S., Shi C., Feeder selection method for full cable networks earth faults based on improved K-means, IET Gener. Transm. Distrib., 16 (9), 3837–3848, 2022.
  • 4. M. B. Atsever M.B., Ö. Karacasu Ö., Hocaoğlu M.H., Determination of proper angle settings for resistance grounded distribution systems for directional earth fault relays, 2020 12th International Conference on Electrical and Electronics Engineering, Bursa-Türkiye, 113-118, 26-28 Kasım 2020.
  • 5. Kennedy J., Ciufo P., Agalgaonkar A., Protection analysis tool for distribution networks with a high embedded generation penetration, Int. J. Electr. Power Energy Syst., 107 (1),605–614, 2019.
  • 6. Kou G., Jordan J, Cockerham B., Patterson R., P. Vansant P, Negative-Sequence Current Injection of Transmission Solar Farms, IEEE Trans Power Delivery, 35 (6), 2740–2743, 2020.
  • 7. Wang X., Gao J., Wei X., Zeng Z., Wei Y., Kheshti M., Single Line to Ground Fault Detection in a Non-Effectively Grounded Distribution Network, IEEE Trans Power Delivery, 33 (6), 3173–3186, 2018.
  • 8. Roberts J., Altuve H.J., Hou D., Review of Ground Fault Protection Methods for Grounded, Ungrounded, and Compensated Distribution Systems, SEL: Pullman, WA, USA, 2005.
  • 9. Li Z.J., Lin S., Guo M.F., Tang J., A Decentralized Fault Section Location Method Using Autoencoder and Feature Fusion in Resonant Grounding Distribution Systems, IEEE Syst. J, 16 (4), 5698-5707, 2022.
  • 10. IEEE, C62.92.1-2016 - IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems--Part I: Introduction, 2017.
  • 11. Hänninen S., Lehtonen M., Characteristics of earth faults in electrical distribution networks with high impedance earthing, Electr. Power Syst. Res., 44 (3), 155-161, 1998.
  • 12. Wang X. Zhang H., Wu Q., Terzija V., Xie W., Fang C., Location of Single Phase to Ground Faults in Distribution Networks Based on Synchronous Transients Energy Analysis, IEEE Trans Smart Grid, 11 (1),774–785, 2020.
  • 13. Pandakov K., Høidalen H.K., Marvik J.I., Misoperation analysis of steady-state and transient methods on earth fault locating in compensated distribution networks, Sustainable Energy Grids Networks, 15 (1), 34–42, 2018,
  • 14. Roberts J., Stulo T.L., Reyes A., Sympathetic tripping problem analysis and solutions, SEL: Pullman, WA, USA, 2002.
  • 15. Bakar A.H.A, B. Ooi B., Govindasamy P., Tan C., llias H.A., Mokhlis H., Directional overcurrent and earth-fault protections for a biomass microgrid system in Malaysia, Int. J. of Electra. Power Energy System., 55 (1), 581–591, 2014.
  • 16. Jaramillo Serna J.J., López-Lezama J.M, Alternative methodology to calculate the directional characteristic settings of directional overcurrent relays in transmission and distribution networks, Energies, 12 (9), 1-25, 2019.
  • 17. Vaca S., Fonseca A., Chapi F., Pérez-Yauli F., “A new methodology for the analysis and optimal setting of directional polarisation methods for overcurrent elements in line protection applications,” IET Gener. Transm. Distrib., 16 (5), 882–896, 2022.
  • 18. Birla D., Maheshwari R.P., Gupta H.O., An Approach to Tackle the Threat of Sympathy Trips in Directional Overcurrent Relay Coordination, IEEE Trans Power Delivery, 22 (2), 851–858, 2007.
  • 19. Sabra H., Ibrahim D.K., Gilany M., Field experience with sympathetic tripping in distribution networks: problems and solutions, The Journal of Engineering, 2018 (15), 1181–1185, 2018.
  • 20. Atsever M.B., Hocaoglu M.H, Time Characteristic Curve Based Earth Fault Relay Selectivity Assessment for Optimal Overcurrent Relay Coordination in Distribution Networks, 57th International Universities Power Engineering Conference, İstanbul, Türkiye, 1-6, 30 Agustos 2 Eylül 2022.
  • 21. Andruszkiewicz J., Lorenc J., Staszak B., Weychan A., Zięba B., Overcurrent protection against multi-phase faults in MV networks based on negative and zero sequence criteria, Int. J. of Electra. Power Energy System, 134 (1),107449, 2022.
  • 22. Paul D., Phase-Ground Fault Current Analysis and Protection of a High-Resistance Grounded Power System, IEEE Trans. Ind. Appl., 56 (4), 3306–3314, 2020
  • 23. Gatta F.M., Geri A., Lauria S., M. Maccioni M., Analytical prediction of abnormal temporary overvoltages due to ground faults in MV networks, Electr. Power Syst. Res., 77 (10), 1305–1313, 2007.
  • 24. Cerretti A., Gatta F.M., Geri A., Lauria S., MacCioni M, Valtorta G., Ground fault temporary overvoltages in MV networks: Evaluation and experimental tests, IEEE Trans Power Delivery, 27 (3), 1592–1600, 2012.
  • 25. Atsever M.B., O. Karacasu O., Hocaoglu M.H., Determination of Proper Angle Settings in Resistance Grounded Distribution Systems for Directional Earth Fault Relays, Turkish J of Electra. Power and Energy Syst., 1 (1), 26–32, 2021.
  • 26. Paul D., High-resistance grounded power system, IEEE Trans Ind Appl., 51 (6), 5261–5269, 2015.
  • 27. Horak J., Directional Overcurrent Relaying (67) Concepts, 59th Annual Conference for Protective Relay Engineers, TX-USA, 164–176, 4-6 Nisan 2006.
  • 28. IEEE Working Group D-3, Considerations in Choosing Directional Polarizing Methods for Ground Overcurrent Elements in Line Protection Applications, IEEE, 1-67, 2014.
  • 29. Akdağ O., Yeroğlu C., Adaptive protection method with fault current limiting mechanism for directional over current relays coordination problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1751-1765, 2022.
  • 30. Atsever M.B., Hocaoglu M.H., Mitigation of sympathy trips in highly cabled non-effectively earthed radial distribution systems via MINLP, Electr. Power Syst. Res., 220 (1), 109377, 2023.
  • 31. Bakar A.H.A, Mokhlis H., Illias H.A, Chong P.L., The study of directional overcurrent relay and directional earth-fault protection application for 33kV underground cable system in Malaysia, Int. J. of Electra. Power Energy System, 40 (1), 113–119, 2012.
  • 32. Vaca S., Fonsec A., Chapi F., Pérez‐Yauli F., A new methodology for the analysis and optimal setting of directional polarisation methods for overcurrent elements in line protection applications, IET Gener. Transm. Distrib., 16 (5), 882-896, 2021.
  • 33. Atsever M.B., U. Deveci U., Yılmaz S.C, Hocaoglu M.H., Zero-Sequence Based Fault Location in Non-Effectively Earthed Distribution Systems; Zero-Sequence Based Fault Location in Non-Effectively Earthed Distribution Systems, 57th International Universities Power Engineering Conference, İstanbul, Türkiye, 1-6, 30 Ağustos 2 Eylül 2022.
  • 34. Lukowicz M., Rebizant W., Kereit M., New approach to intermittent earth fault detection with admittance criteria, Int. J. of Electra. Power Energy System, 134 (1),107449, 2022.
  • 35. Farughian A., Kumpulainen L., Kauhaniemi K., Pettissalo S., Sallinen V., Technical requirements for practical implementation of fault passage indication, in Proceedings of 2021 IEEE PES Innovative Smart Grid Technologies Europe, Espo-Finlandiya, 1-6, 18-21 Ekim 2021.
  • 36. Atsever M.B., Karacasu O., Hocaoglu M.H., Earth Fault Protection Selectivity Issues on Reactance Earthed Distribution System, 13th International Conference on Electrical and Electronics Engineering (ELECO), Bursa-Türkiye, 257-262, 25-27 Kasım 2021.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mert Bekir Atsever 0000-0003-2032-2261

Mehmet Hakan Hocaoğlu 0000-0001-6528-3812

Early Pub Date October 18, 2023
Publication Date November 30, 2023
Submission Date December 9, 2022
Acceptance Date April 25, 2023
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Atsever, M. B., & Hocaoğlu, M. H. (2023). Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 883-898. https://doi.org/10.17341/gazimmfd.1216742
AMA Atsever MB, Hocaoğlu MH. Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu. GUMMFD. November 2023;39(2):883-898. doi:10.17341/gazimmfd.1216742
Chicago Atsever, Mert Bekir, and Mehmet Hakan Hocaoğlu. “Kablo yoğun Türk dağıtım şebekelerinde Kapasitif akım Temelli Hatalı açmaların Engellenmesi için yöntem-Hibritasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 2 (November 2023): 883-98. https://doi.org/10.17341/gazimmfd.1216742.
EndNote Atsever MB, Hocaoğlu MH (November 1, 2023) Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 883–898.
IEEE M. B. Atsever and M. H. Hocaoğlu, “Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu”, GUMMFD, vol. 39, no. 2, pp. 883–898, 2023, doi: 10.17341/gazimmfd.1216742.
ISNAD Atsever, Mert Bekir - Hocaoğlu, Mehmet Hakan. “Kablo yoğun Türk dağıtım şebekelerinde Kapasitif akım Temelli Hatalı açmaların Engellenmesi için yöntem-Hibritasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (November 2023), 883-898. https://doi.org/10.17341/gazimmfd.1216742.
JAMA Atsever MB, Hocaoğlu MH. Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu. GUMMFD. 2023;39:883–898.
MLA Atsever, Mert Bekir and Mehmet Hakan Hocaoğlu. “Kablo yoğun Türk dağıtım şebekelerinde Kapasitif akım Temelli Hatalı açmaların Engellenmesi için yöntem-Hibritasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, 2023, pp. 883-98, doi:10.17341/gazimmfd.1216742.
Vancouver Atsever MB, Hocaoğlu MH. Kablo yoğun Türk dağıtım şebekelerinde kapasitif akım temelli hatalı açmaların engellenmesi için yöntem-hibritasyonu. GUMMFD. 2023;39(2):883-98.