Research Article
BibTex RIS Cite

Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği

Year 2024, Volume: 39 Issue: 2, 943 - 958, 30.11.2023
https://doi.org/10.17341/gazimmfd.1218594

Abstract

Enerji verimliliği çalışmaları kapsamında miras yapılarının dönüşümleri son yıllarda ciddi bir araştırma alanı haline gelmiştir. Bu çalışma, bir miras binasını korurken uygulanacak müdahalelerde yapının mevcut durumunun analizinin, izleme ve denetimin önemine dair vurgu yapmayı amaçlamaktadır. Bu amaç kapsamında tarihi bir yapıdaki enerji performansı izleme sürecini bir vaka çalışması olarak sunmaktadır. Eskişehir’in, Odunpazarı ilçesinde bulunan, 18.yy yapısı Tiryakizade Süleyman Ağa Cami, zemin katı kafeterya üst katı cami olmak üzere çok fonksiyonlu kullanıma sahiptir. Fonksiyon çeşitliliğine bağlı kullanım ve kullanıcı yoğunluğu değişken olan yapının enerji performans izlemesi 2022 yılı içerisinde kesikli/tekrarlı periyod yöntemi kullanılarak gerçekleştirilmiştir. Yapı konumuna ait dış iklim verileri, iç mekân sıcaklık (oC), iç mekan bağıl nem (%), kullanıcı varlığı (%), aydınlatma elemanlarının açık/kapalı durumları (%), yapı gaz tüketimi (kWh), yapı elemanları ısıl geçirgenlik katsayıları (W/m2K) uygun cihazlar ve yöntemler kullanılarak izlenmiştir. Tüm mevsim sezonlarından elde edilen yapı izleme verileri, uluslararası standartlar olan ASHRAE 55 ve ISO 7730’a göre değerlendirilmiş standartlarda yer alan iç mekan ısıl konfor şartlarınca yapı içi ısıl durumu incelenmiştir. Ele alınan vakanın standartlarda yer alan ısıl konfor şartlarını yüksek oranda sağlamadığı tespit edilmiştir. Ulaşılan tespite yönelik yapı kabuğu, sızdırmazlık, kullanıcı faktörü gibi parametreler değerlendirmeye alınmış ve ilerleyen çalışmalar için detay araştırma noktaları belirlenmiştir.

Supporting Institution

Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri Komisyonu (BAP)

Project Number

22ADP105

References

  • Gonzales-Torres M., Perez-Lombard L., Coronel J.F., Maestre I.R., Yan D., A review on buildings energy information: Trends, end-uses, fuels and drivers, Energy Reports, 8, 626-637, 2022.
  • Jelinčić D.A., Glivetić D, Cultural heritage and sustainability, Project coordinator: INORDE – Institute for Economic Development of Ourense Province, Spain, 2016.
  • Gonçalves J., Mateus R., Silvestre J.D., Roders A.P., Going beyond good intentions for the sustainable conservation of built heritage: A systematic literature review, Sustainability, 12 (22), 1-28, 2020.
  • ICOMOS- International Council on Monuments and Sites. International Charter for the Conservation and Restoration of Monuments and Sites (The Venice Charter). https://www.icomos.org/charters/venice_e.pdf. Yayın tarihi 1964. Erişim tarihi Temmuz 27, 2022.
  • Piselli C., Guastaveglia A., Romanelli J., Cotana F., Pisello A.L., Facility energy management application of HBIM for historical low-carbon communities: Design, modelling and operation control of geothermal energy retrofit in a real italian case study, Energies, 13, 1-18, 2020.
  • Akkurt G.G., Aste N., Borderon J., Buda A., Calzolari M., Chung D., Costanzo V., Del Pero C., Evola G., Huerto-Cardenas H.E., Leonforte F., Lo Faro A., Lucchi E., Marletta L., Nocera F., Pracchi V., Turhan C., Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions, Renewable and Sustainable Energy Reviews, 118, 1-17, 2020.
  • Havinga L., Colenbrander B., Schellen H., Heritage significance and the identification of attributes to preserve in a sustainable refurbishment, Journal of Cultural Heritage, 43, 282-293, 2020.
  • Lucero-Gomez P., Balliana E., Izzo- Catherina F., Zendri E., A new methodology to characterize indoor variations of temperature and relative humidity in historical museum buildings for conservation purposes, Building and Environment, 185, 1-17, 2020.
  • Timur B.A., Başaran T., İpekoğlu B., Capacity of traditional fireplaces (ocaks) to meet the current heating loads within the reuse of historical houses: Examples from Southwest Anatolia, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 189-200, 2023.
  • Meoni A., Vittori F., Piselli C., D’Alessandro A., Pisello A.L., Ubertini F., Integration of structural performance and human-centric comfort monitoring in historical building information modeling, Automation in Construction, 138, 1-17, 2022.
  • Günaydın M., Genç A.F., Altunsisk A.C., Hacıefendioğlu K., Okur F.Y., Okur E., Adanur, S., Structural condition assessment of a historical masonry school building using experimental and numerical methods, Journal of Civil Structural Health Monitoring, 12, 1083-1113, 2022.
  • Arsan Z.D., Sökmen N., Monitoring and Simulating a Private House for Building Performance Analysis, Third German-Austrian IBPSA Conference, Building Performance in a Changing Environment (BAUSIM 2010), Proceedings Book, Vienna University of Technology, Vienna, Austria, 196-197, 2010.
  • Coelho G.B.A., Silva H.E., Henriques F.M.A., Calibrated hygrothermal simulation models for historical buildings, Building and Environment, 142, 439-450, 2018.
  • Al-Saadi S.N., Pragmatic retrofitting strategies for improving thermal, energy, and economic performance of an institutional building in a cooling-dominated climate, Journal of Building Engineering, 44, 1-17, 2021.
  • Özbalta T.G., Yıldız Y., Bayram İ., Yılmaz O.C., Energy performance analysis of a historical building using cost-optimal assessment, Energy & Buildings, 250, 1-14, 2021.
  • Penna P., Cappelletti F., Tahmasebi F., Mahdavi A., Multi-stage calibration of the simulation model of a school building through short-term monitoring, Electronic Journal of Information Technology in Construction, 20, 132-145, 2015.
  • Ahmed T.M.F., Rajagopalan P., Fuller R., Experimental validation of an energy model of a day surgery/procedure centre in Victoria, Journal of Building Engineering, 10, 1-12, 2017.
  • Sözer H., Sami Shams A., Predicting the indoor thermal data for heating season based on short-term measurements to calibrate the simulation set-points, Energy and Buildings, 202, 1-11, 2019.
  • Tüysüz F., Sözer H., Calibrating the building energy model with the short term monitored data: A case study of a large-scale residential building, Energy and Buildings, 224, 1-13, 2020.
  • Sciurpi F., Ghelli A., Pierangioli L., "La Specola" Museum in Florence: Environmental monitoring and building energy simulation, Procedia Structural Integrity, 29, 16-24, 2020.
  • Vella R.C., Martinez F.J.R., Yousif C., Gatt D., A study of thermal comfort in naturally ventilated churches in a Mediterranean climate, Energy and Buildings, 213, 2020.
  • Cho H., Yun B.Y., Kim Y.U., Yuk H., Kim S., Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure in Korea in the 1920s, Renewable and Sustainable Energy Reviews, 168, 1-18, 2020.
  • Eskişehir Kültür Varlıklarını Koruma Bölge Kurulu Müdürlüğünden alınan proje restitüsyon raporu, proje arşivi, Erişim tarihi Haziran 15, 2022.
  • Eskişehir Kültür Varlıklarını Koruma Bölge Kurulu Müdürlüğü, proje arşivi, Erişim tarihi Haziran 15, 2022.
  • Eskişehir Kültür Varlıklarını Koruma Bölge Kurulu Müdürlüğünden alınan restorasyon raporu. Yayın tarihi 2013. Erişim tarihi Haziran 15, 2022.
  • Güçyeter B., Günaydın H.M., Optimization of an envelope retrofit strategy for an existing office building, Energy and Buildings, 55, 647-659, 2012.
  • ANSI/ASHRAE Standart 55. Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, 2017.
  • Abushakra B., Paulus M.T., An hourly hybrid multivariate change-point inverse model using short-term monitored data for annual prediction of building energy performance, Part II: Methodology (1404-RP), Science and Technology for the Built Environment, 984-996, 2016.
  • TS 825. Binalarda Isı Yalıtım Kuralları. http://www1.mmo.org.tr/resimler/dosya_ekler/cf3e258fbdf3eb7_ek.pdf. Revize tarihi Temmuz, 2009. Erişim tarihi Ekim 2022.
  • Atmaca İ., Yiğit A., Isıl Konfor ile İlgili Mevcut Standartlar ve Konfor Parametrelerinin Çeşitli Modeller ile İncelenmesi, IX. Ulusal Tesisat Mühendisliği Kongresi, İzmir-Türkiye, 543-555, 2009.
  • Şenkal Sezer F., Kullanıcı memnuniyetinin konfor koşulları açısından değerlendirilmesi: bir eğitim binası örneği. Trakya University Journal of Engineering Sciences, 16 (1), 11-19, 2015.
  • Ganesh A.G., Sinha S.L., Verma T.N., Dewangan S.K., Investigation of indoor environment quality and factors affecting human comfort: A critical review, Building and Environment, 204, 1-16, 2021.
  • EN ISO 7730, Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, 2005.
  • Fanger P.O., Assessment of man's thermal comfort in practice, British Journal of Industrial Medicine, 30, 313-324, 1973.
  • Tripathi B., Arora R.C., Moulic S.G., Effect of Buoyancy on Room Air Flow, Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Volume 2, Parts A and B, Charlotte, North Carolina-USA, 1333-1338, 11–15 Temmuz, 2004.
  • Güçyeter B., Alptekin O., Ünver H., Yayınlanmamış Bilimsel Araştırma Projesi sonuç raporu, Eskişehir Osmangazi Üniversitesi.
  • Francis, G.N.L., Smith, A.ZP., Biddulph, P., Hamilton, I.G., Lowe, R., Mavrogianni, A., Oikonomou, E., Raslan, R., Stamp, S., Stone, A., Summerfield, A.J., Veitch, D., Gori, V., Oreszczyn, T., Solid-wall U-values: heat flux measurements compared with standard assumptions, Building Research & Information, 43:2, 238-252, 2015.
  • Baker, P., U-values and traditional buildings, in situ measurements and their comparisons to calculated values, Edinburgh: Historic Scotland, 2011.
  • Biddulph, P., Gori, V., Elwell, C.A., Scott, C., Rye, C., Lowe, R., Oreszczyn, T., Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements, Energy and Buildings, 78, 0-16, 2014.
  • Desogus, G., Mura, S., Ricciu, R., Comparing different approaches to in situ measurement of building components thermal resistance, 43, 10, 2613-2620, 2011.
  • Ülgen, K., Experimental and theoretical investigation of effects of wall's thermophysical properties on time lag and decrement factor, Energy and Buildings, 34, 273-278, 2002.
  • Zhang, L., Zhang, J., Wang, F., Wang, Y., Effects of wall masonry layer's thermophysical properties and insulation position on time lag and decrement factor, Indoor and Built Environment, 25 (2), 371-377, 2016.
  • Shenwei, Y., Hao, S., Mu, J., Tian, D., Optimization of wall thickness based on a comprehensive evaluation index of thermal mass and insulation, Sustainability, 14 (3), 1143.
  • Alshuhail K., Taleb H., Thermal performance and experimental assessment of building orientations in the United Arab Emirates (UAE), Science and Technology for the Built Environment, 0, 1-29, 2020.
  • Ozel M., Pihtili K., Optimum location and distribution of insulation layers on building walls with various orientations, Building and Environment, 42 (8), 3051-3059, 2007.
Year 2024, Volume: 39 Issue: 2, 943 - 958, 30.11.2023
https://doi.org/10.17341/gazimmfd.1218594

Abstract

Project Number

22ADP105

References

  • Gonzales-Torres M., Perez-Lombard L., Coronel J.F., Maestre I.R., Yan D., A review on buildings energy information: Trends, end-uses, fuels and drivers, Energy Reports, 8, 626-637, 2022.
  • Jelinčić D.A., Glivetić D, Cultural heritage and sustainability, Project coordinator: INORDE – Institute for Economic Development of Ourense Province, Spain, 2016.
  • Gonçalves J., Mateus R., Silvestre J.D., Roders A.P., Going beyond good intentions for the sustainable conservation of built heritage: A systematic literature review, Sustainability, 12 (22), 1-28, 2020.
  • ICOMOS- International Council on Monuments and Sites. International Charter for the Conservation and Restoration of Monuments and Sites (The Venice Charter). https://www.icomos.org/charters/venice_e.pdf. Yayın tarihi 1964. Erişim tarihi Temmuz 27, 2022.
  • Piselli C., Guastaveglia A., Romanelli J., Cotana F., Pisello A.L., Facility energy management application of HBIM for historical low-carbon communities: Design, modelling and operation control of geothermal energy retrofit in a real italian case study, Energies, 13, 1-18, 2020.
  • Akkurt G.G., Aste N., Borderon J., Buda A., Calzolari M., Chung D., Costanzo V., Del Pero C., Evola G., Huerto-Cardenas H.E., Leonforte F., Lo Faro A., Lucchi E., Marletta L., Nocera F., Pracchi V., Turhan C., Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions, Renewable and Sustainable Energy Reviews, 118, 1-17, 2020.
  • Havinga L., Colenbrander B., Schellen H., Heritage significance and the identification of attributes to preserve in a sustainable refurbishment, Journal of Cultural Heritage, 43, 282-293, 2020.
  • Lucero-Gomez P., Balliana E., Izzo- Catherina F., Zendri E., A new methodology to characterize indoor variations of temperature and relative humidity in historical museum buildings for conservation purposes, Building and Environment, 185, 1-17, 2020.
  • Timur B.A., Başaran T., İpekoğlu B., Capacity of traditional fireplaces (ocaks) to meet the current heating loads within the reuse of historical houses: Examples from Southwest Anatolia, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 189-200, 2023.
  • Meoni A., Vittori F., Piselli C., D’Alessandro A., Pisello A.L., Ubertini F., Integration of structural performance and human-centric comfort monitoring in historical building information modeling, Automation in Construction, 138, 1-17, 2022.
  • Günaydın M., Genç A.F., Altunsisk A.C., Hacıefendioğlu K., Okur F.Y., Okur E., Adanur, S., Structural condition assessment of a historical masonry school building using experimental and numerical methods, Journal of Civil Structural Health Monitoring, 12, 1083-1113, 2022.
  • Arsan Z.D., Sökmen N., Monitoring and Simulating a Private House for Building Performance Analysis, Third German-Austrian IBPSA Conference, Building Performance in a Changing Environment (BAUSIM 2010), Proceedings Book, Vienna University of Technology, Vienna, Austria, 196-197, 2010.
  • Coelho G.B.A., Silva H.E., Henriques F.M.A., Calibrated hygrothermal simulation models for historical buildings, Building and Environment, 142, 439-450, 2018.
  • Al-Saadi S.N., Pragmatic retrofitting strategies for improving thermal, energy, and economic performance of an institutional building in a cooling-dominated climate, Journal of Building Engineering, 44, 1-17, 2021.
  • Özbalta T.G., Yıldız Y., Bayram İ., Yılmaz O.C., Energy performance analysis of a historical building using cost-optimal assessment, Energy & Buildings, 250, 1-14, 2021.
  • Penna P., Cappelletti F., Tahmasebi F., Mahdavi A., Multi-stage calibration of the simulation model of a school building through short-term monitoring, Electronic Journal of Information Technology in Construction, 20, 132-145, 2015.
  • Ahmed T.M.F., Rajagopalan P., Fuller R., Experimental validation of an energy model of a day surgery/procedure centre in Victoria, Journal of Building Engineering, 10, 1-12, 2017.
  • Sözer H., Sami Shams A., Predicting the indoor thermal data for heating season based on short-term measurements to calibrate the simulation set-points, Energy and Buildings, 202, 1-11, 2019.
  • Tüysüz F., Sözer H., Calibrating the building energy model with the short term monitored data: A case study of a large-scale residential building, Energy and Buildings, 224, 1-13, 2020.
  • Sciurpi F., Ghelli A., Pierangioli L., "La Specola" Museum in Florence: Environmental monitoring and building energy simulation, Procedia Structural Integrity, 29, 16-24, 2020.
  • Vella R.C., Martinez F.J.R., Yousif C., Gatt D., A study of thermal comfort in naturally ventilated churches in a Mediterranean climate, Energy and Buildings, 213, 2020.
  • Cho H., Yun B.Y., Kim Y.U., Yuk H., Kim S., Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure in Korea in the 1920s, Renewable and Sustainable Energy Reviews, 168, 1-18, 2020.
  • Eskişehir Kültür Varlıklarını Koruma Bölge Kurulu Müdürlüğünden alınan proje restitüsyon raporu, proje arşivi, Erişim tarihi Haziran 15, 2022.
  • Eskişehir Kültür Varlıklarını Koruma Bölge Kurulu Müdürlüğü, proje arşivi, Erişim tarihi Haziran 15, 2022.
  • Eskişehir Kültür Varlıklarını Koruma Bölge Kurulu Müdürlüğünden alınan restorasyon raporu. Yayın tarihi 2013. Erişim tarihi Haziran 15, 2022.
  • Güçyeter B., Günaydın H.M., Optimization of an envelope retrofit strategy for an existing office building, Energy and Buildings, 55, 647-659, 2012.
  • ANSI/ASHRAE Standart 55. Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, 2017.
  • Abushakra B., Paulus M.T., An hourly hybrid multivariate change-point inverse model using short-term monitored data for annual prediction of building energy performance, Part II: Methodology (1404-RP), Science and Technology for the Built Environment, 984-996, 2016.
  • TS 825. Binalarda Isı Yalıtım Kuralları. http://www1.mmo.org.tr/resimler/dosya_ekler/cf3e258fbdf3eb7_ek.pdf. Revize tarihi Temmuz, 2009. Erişim tarihi Ekim 2022.
  • Atmaca İ., Yiğit A., Isıl Konfor ile İlgili Mevcut Standartlar ve Konfor Parametrelerinin Çeşitli Modeller ile İncelenmesi, IX. Ulusal Tesisat Mühendisliği Kongresi, İzmir-Türkiye, 543-555, 2009.
  • Şenkal Sezer F., Kullanıcı memnuniyetinin konfor koşulları açısından değerlendirilmesi: bir eğitim binası örneği. Trakya University Journal of Engineering Sciences, 16 (1), 11-19, 2015.
  • Ganesh A.G., Sinha S.L., Verma T.N., Dewangan S.K., Investigation of indoor environment quality and factors affecting human comfort: A critical review, Building and Environment, 204, 1-16, 2021.
  • EN ISO 7730, Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, 2005.
  • Fanger P.O., Assessment of man's thermal comfort in practice, British Journal of Industrial Medicine, 30, 313-324, 1973.
  • Tripathi B., Arora R.C., Moulic S.G., Effect of Buoyancy on Room Air Flow, Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Volume 2, Parts A and B, Charlotte, North Carolina-USA, 1333-1338, 11–15 Temmuz, 2004.
  • Güçyeter B., Alptekin O., Ünver H., Yayınlanmamış Bilimsel Araştırma Projesi sonuç raporu, Eskişehir Osmangazi Üniversitesi.
  • Francis, G.N.L., Smith, A.ZP., Biddulph, P., Hamilton, I.G., Lowe, R., Mavrogianni, A., Oikonomou, E., Raslan, R., Stamp, S., Stone, A., Summerfield, A.J., Veitch, D., Gori, V., Oreszczyn, T., Solid-wall U-values: heat flux measurements compared with standard assumptions, Building Research & Information, 43:2, 238-252, 2015.
  • Baker, P., U-values and traditional buildings, in situ measurements and their comparisons to calculated values, Edinburgh: Historic Scotland, 2011.
  • Biddulph, P., Gori, V., Elwell, C.A., Scott, C., Rye, C., Lowe, R., Oreszczyn, T., Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements, Energy and Buildings, 78, 0-16, 2014.
  • Desogus, G., Mura, S., Ricciu, R., Comparing different approaches to in situ measurement of building components thermal resistance, 43, 10, 2613-2620, 2011.
  • Ülgen, K., Experimental and theoretical investigation of effects of wall's thermophysical properties on time lag and decrement factor, Energy and Buildings, 34, 273-278, 2002.
  • Zhang, L., Zhang, J., Wang, F., Wang, Y., Effects of wall masonry layer's thermophysical properties and insulation position on time lag and decrement factor, Indoor and Built Environment, 25 (2), 371-377, 2016.
  • Shenwei, Y., Hao, S., Mu, J., Tian, D., Optimization of wall thickness based on a comprehensive evaluation index of thermal mass and insulation, Sustainability, 14 (3), 1143.
  • Alshuhail K., Taleb H., Thermal performance and experimental assessment of building orientations in the United Arab Emirates (UAE), Science and Technology for the Built Environment, 0, 1-29, 2020.
  • Ozel M., Pihtili K., Optimum location and distribution of insulation layers on building walls with various orientations, Building and Environment, 42 (8), 3051-3059, 2007.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Makaleler
Authors

Ebru Ulaş Sarıaydın 0000-0002-9156-4674

Başak Güçyeter 0000-0002-5269-3174

Hicran Hanım Halaç 0000-0001-8046-9914

Project Number 22ADP105
Early Pub Date October 18, 2023
Publication Date November 30, 2023
Submission Date December 14, 2022
Acceptance Date May 15, 2023
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Ulaş Sarıaydın, E., Güçyeter, B., & Halaç, H. H. (2023). Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 943-958. https://doi.org/10.17341/gazimmfd.1218594
AMA Ulaş Sarıaydın E, Güçyeter B, Halaç HH. Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği. GUMMFD. November 2023;39(2):943-958. doi:10.17341/gazimmfd.1218594
Chicago Ulaş Sarıaydın, Ebru, Başak Güçyeter, and Hicran Hanım Halaç. “Tarihi yapılarda Izleme sürecinin Planlanması Ve Enerji Performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 2 (November 2023): 943-58. https://doi.org/10.17341/gazimmfd.1218594.
EndNote Ulaş Sarıaydın E, Güçyeter B, Halaç HH (November 1, 2023) Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 943–958.
IEEE E. Ulaş Sarıaydın, B. Güçyeter, and H. H. Halaç, “Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği”, GUMMFD, vol. 39, no. 2, pp. 943–958, 2023, doi: 10.17341/gazimmfd.1218594.
ISNAD Ulaş Sarıaydın, Ebru et al. “Tarihi yapılarda Izleme sürecinin Planlanması Ve Enerji Performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (November 2023), 943-958. https://doi.org/10.17341/gazimmfd.1218594.
JAMA Ulaş Sarıaydın E, Güçyeter B, Halaç HH. Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği. GUMMFD. 2023;39:943–958.
MLA Ulaş Sarıaydın, Ebru et al. “Tarihi yapılarda Izleme sürecinin Planlanması Ve Enerji Performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, 2023, pp. 943-58, doi:10.17341/gazimmfd.1218594.
Vancouver Ulaş Sarıaydın E, Güçyeter B, Halaç HH. Tarihi yapılarda izleme sürecinin planlanması ve enerji performans değerlendirmesi: Tiryakizade Süleyman Ağa Cami örneği. GUMMFD. 2023;39(2):943-58.