Research Article
BibTex RIS Cite

Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi

Year 2024, Volume: 39 Issue: 2, 1303 - 1314, 30.11.2023
https://doi.org/10.17341/gazimmfd.1287380

Abstract

Araçlar ile ilgili kazalar dünya çapında önemli bir sorundur ve bu durum toplum için büyük bir ekonomik kayıp oluşturmaktadır. Bilindiği üzere, diğer tüm kaza türlerinde olduğu gibi (düşük hızlı kazalar hariç), düz yolda hızla hareket eden araçların çarpması çok kısa bir zaman diliminde gerçekleşir. Bu kısa sürede aracın en az seviyede zarar görmesi istenmektedir. Taşıt yapılarının tasarımında en önemli parçalardan biri enerji sönümleyici profillerdir. Enerji sönümleyici profillerin tasarımında ve test edilmesinde, kaza esnasında en üst seviyede koruma sağlaması istenmektedir. Araçlarda kazalardan kaynaklanan hasarların azaltılması için, son yıllarda çok çeşitli enerji sönümleyici türleri araştırılmıştır. Bu alanda otomotiv endüstrisindeki bir başka önemli eğilim, otomobillerde biyo-ilhamlı geometrik kesit gibi farklı yapıların enerji sönümleyiciler olarak kullanılmasıdır. Bu çalışmada, hibrit tüplerin enerji yutma kabiliyetini geliştirmek için karahindibanın yapısından esinlenerek üç farklı bio-ilhamlı yapı tasarımı yapılmıştır (1M, 2M ve 3M). Tüm modeller aynı koşullarda deforme edilmiştir. Sonuçlar, 3M modelinin performansının diğer modellere göre önemli ölçüde üstün olduğunu göstermiştir. Hibrit tüpler ile geleneksel boş dairesel tüpler (0M) arasında yapılan karşılaştırmada 3M modelinin ezme kuvveti verimliliğinin %8,63, enerji sönümleme kapasitesinin %22,64 arttığı belirlenmiştir.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FYL-2021-7392

Thanks

Bu çalışmaya, FYL-2021-7392 nolu proje ile sağladığı destekten dolayı Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederiz.

References

  • 1. Çavdar A., Uçar M., Kılıçaslan İ., Checking of the high speed faults caused to traffic accident and controling by active safety systems, Journal of Faculty of Engineering and Architecture of Gazi University, 23 (1), 187–198, 2008.
  • 2. Alexander, J.M., An approximate analysis of the collapse of thin cylindrical shells under axial loading, The quarterly journal of mechanics and applied mathematics, 13.1, 10-15, 1960.
  • 3. Wierzbicki T., Wlodzimierz A., On the crushing mechanics of thin-walled structures, Journal of Applied Mechanics, 727-734, 1983.
  • 4. Jones, N., Abramowicz W., Static and dynamic axial crushing of circular and square tubes, Metal forming and impact mechanics, 225-247, 1985.
  • 5. Abramowicz, W., T. Wierzbicki, Axial crushing of multicorner sheet metal columns, Journal of Applied Mechanics, 113-120, 1989.
  • 6. San H., Pham N., Chen T. M., Hao H., Lu, G., Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing, Thin-Walled Structures, 169, 108315, 2021.
  • 7. Mansor M. A., Ahmad, Z., Abdullah M. R., Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing, Engineering Structures, 252, 113660, 2022.
  • 8. Zhang X., Cheng G., Zhang H., Theoretical prediction and numerical simulation of multi-cell square thin-walled structures, Thin-Walled Structures, 44 (11), 1185–1191, 2006.
  • 9. Xie S., Yang W., Wang N., Li H., Crashworthiness analysis of multi-cell square tubes under axial loads, International Journal of Mechanical Sciences, 121, 106–118, 2017.
  • 10. Tran T. N., Study on the crashworthiness of windowed multi-cell square tubes under axial and oblique impact, Thin-Walled Structures, 155, 106907, 2020.
  • 11. Mert S. K., Demiral M., Altın M., Acar E., Güler M. A., Experimental and numerical investigation on the crashworthiness optimization of thin-walled aluminum tubes considering damage criteria, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (2), 1-22, 2021.
  • 12. Kazi M., Eljack K., Mahdi E., Design of composite rectangular tubes for optimum crashworthiness performance via experimental and ANN techniques. Composite Structures, 279, 114858, 2022.
  • 13. Zhang H., Zhang X., Crashworthiness performance of conical tubes with nonlinear thickness distribution, Thin-Walled Structures, 99, 35-44, 2016.
  • 14. Alkhatib S. E., Tarlochan F., Eyvazian A., Collapse behavior of thin-walled corrugated tapered tubes, Engineering Structures, 150, 674–692, 2017.
  • 15. Asanjarani A., Dibajian S. H., Mahdian A., Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations, Thin-Walled Structures, 116, 26–36, 2017.
  • 16. Acar E., Yılmaz B., Güler M. A., Altın M., Multi-fidelity crashworthiness optimization of a bus bumper system under frontal impact, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (9), 1–17, 2020.
  • 17. Djamaluddin F., Abdullah S., Ariffin A. K., Nopiah Z. M., Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions, Thin-Walled Structures, 87, 1–11, 2015.
  • 18. Fang J., Gao Y., Sun G., Qiu N., Li Q., On design of multi-cell tubes under axial and oblique impact loads, Thin-Walled Structures, 95, 115–126, 2015.
  • 19. Altın M., Acar E., Güler M. A., Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns, Thin-Walled Structures, 131, 309-323, 2018.
  • 20. Qi C., Yang S., Dong F., Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Structures, 59, 103–119, 2012.
  • 21. Altın M., Investigation of performances of energy absorbing profiles having different geometries under oblique loads, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (3), 1517–1525, 2019.
  • 22. Vinayagar K., Senthil Kumar A., Crashworthiness analysis of double section bi-tubular thin-walled structures, Thin-Walled Structures, 112, 184–193, 2017.
  • 23. Zarei H., Kröger M., Albertsen H., An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes, Composite Structures, 85 (3), 245–257, 2008.
  • 24. Wang P., Yang F., Fan H., Lu G., Bio-inspired multi-cell tubular structures approaching ideal energy absorption Performance, Materials and Design, 225, 111495, 2023.
  • 25. Wu F., Chen Y., Zhao S., Hong Y., Zhang Z., Zheng S., Mechanical properties and energy absorption of composite bio-inspired multi-cell tubes, Thin-Walled Structures, 184, 110451, 2023.
  • 26. Hao P., Du J., Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading. Journal of the Mechanical Behavior of Biomedical Materials, 79, 301–308, 2018.
  • 27. Yao R., Pang T., He S., Li Q., Zhang B., Sun G., A bio-inspired foam-filled multi-cell structural configuration for energy absorption, Composites Part B: Engineering, 238, 109801, 2022.
  • 28. Zhang L., Bai Z., Bai F., Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections, Thin-Walled Structures, 122, 42–51, 2018.
  • 29. Liu S., Tong Z., Tang Z., Liu Y., Zhang Z., Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads, Thin-Walled Structures, 88, 70–81, 2015.
  • 30. Yang X., Sun Y., Yang J., Pan Q., Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure, Thin-Walled Structures, 125, 1–11, 2018.
  • 31. Yang J., Gu D., Lin K., Yang Y., Ma C., Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: Numerical simulation and selective laser melting process, Journal of the Mechanical Behavior of Biomedical Materials, 91, 59–67, 2019.
  • 32. Karakuş, R., Tanık, Ç., Optimization of additive manufacturing by vacuum infusion method, Journal of Faculty of Engineering and Architecture of Gazi University, 38 (4), 2451-2463, 2023.
  • 33. Güleç, E., Evirgen, B., A scale effect on the geogrids produced with three-dimensional printer technology, Journal of Faculty of Engineering and Architecture of Gazi University, 38 (3), 1793-1804, 2023.
  • 34. Duman, B., Özsoy, K., A deep learning-based approach for defect detection in powder bed fusion additive manufacturing using transfer learning, Journal of Faculty of Engineering and Architecture of Gazi University, 37 (1), 361-375, 2022.
  • 35. Altın M., Acar E., Güler M. A., Crashworthiness optimization of hierarchical hexagonal honeycombs under out-of-plane impact, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235 (6), 963–974, 2021.
Year 2024, Volume: 39 Issue: 2, 1303 - 1314, 30.11.2023
https://doi.org/10.17341/gazimmfd.1287380

Abstract

Project Number

FYL-2021-7392

References

  • 1. Çavdar A., Uçar M., Kılıçaslan İ., Checking of the high speed faults caused to traffic accident and controling by active safety systems, Journal of Faculty of Engineering and Architecture of Gazi University, 23 (1), 187–198, 2008.
  • 2. Alexander, J.M., An approximate analysis of the collapse of thin cylindrical shells under axial loading, The quarterly journal of mechanics and applied mathematics, 13.1, 10-15, 1960.
  • 3. Wierzbicki T., Wlodzimierz A., On the crushing mechanics of thin-walled structures, Journal of Applied Mechanics, 727-734, 1983.
  • 4. Jones, N., Abramowicz W., Static and dynamic axial crushing of circular and square tubes, Metal forming and impact mechanics, 225-247, 1985.
  • 5. Abramowicz, W., T. Wierzbicki, Axial crushing of multicorner sheet metal columns, Journal of Applied Mechanics, 113-120, 1989.
  • 6. San H., Pham N., Chen T. M., Hao H., Lu, G., Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing, Thin-Walled Structures, 169, 108315, 2021.
  • 7. Mansor M. A., Ahmad, Z., Abdullah M. R., Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing, Engineering Structures, 252, 113660, 2022.
  • 8. Zhang X., Cheng G., Zhang H., Theoretical prediction and numerical simulation of multi-cell square thin-walled structures, Thin-Walled Structures, 44 (11), 1185–1191, 2006.
  • 9. Xie S., Yang W., Wang N., Li H., Crashworthiness analysis of multi-cell square tubes under axial loads, International Journal of Mechanical Sciences, 121, 106–118, 2017.
  • 10. Tran T. N., Study on the crashworthiness of windowed multi-cell square tubes under axial and oblique impact, Thin-Walled Structures, 155, 106907, 2020.
  • 11. Mert S. K., Demiral M., Altın M., Acar E., Güler M. A., Experimental and numerical investigation on the crashworthiness optimization of thin-walled aluminum tubes considering damage criteria, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43 (2), 1-22, 2021.
  • 12. Kazi M., Eljack K., Mahdi E., Design of composite rectangular tubes for optimum crashworthiness performance via experimental and ANN techniques. Composite Structures, 279, 114858, 2022.
  • 13. Zhang H., Zhang X., Crashworthiness performance of conical tubes with nonlinear thickness distribution, Thin-Walled Structures, 99, 35-44, 2016.
  • 14. Alkhatib S. E., Tarlochan F., Eyvazian A., Collapse behavior of thin-walled corrugated tapered tubes, Engineering Structures, 150, 674–692, 2017.
  • 15. Asanjarani A., Dibajian S. H., Mahdian A., Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations, Thin-Walled Structures, 116, 26–36, 2017.
  • 16. Acar E., Yılmaz B., Güler M. A., Altın M., Multi-fidelity crashworthiness optimization of a bus bumper system under frontal impact, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (9), 1–17, 2020.
  • 17. Djamaluddin F., Abdullah S., Ariffin A. K., Nopiah Z. M., Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions, Thin-Walled Structures, 87, 1–11, 2015.
  • 18. Fang J., Gao Y., Sun G., Qiu N., Li Q., On design of multi-cell tubes under axial and oblique impact loads, Thin-Walled Structures, 95, 115–126, 2015.
  • 19. Altın M., Acar E., Güler M. A., Foam filling options for crashworthiness optimization of thin-walled multi-tubular circular columns, Thin-Walled Structures, 131, 309-323, 2018.
  • 20. Qi C., Yang S., Dong F., Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Structures, 59, 103–119, 2012.
  • 21. Altın M., Investigation of performances of energy absorbing profiles having different geometries under oblique loads, Journal of Faculty of Engineering and Architecture of Gazi University, 34 (3), 1517–1525, 2019.
  • 22. Vinayagar K., Senthil Kumar A., Crashworthiness analysis of double section bi-tubular thin-walled structures, Thin-Walled Structures, 112, 184–193, 2017.
  • 23. Zarei H., Kröger M., Albertsen H., An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes, Composite Structures, 85 (3), 245–257, 2008.
  • 24. Wang P., Yang F., Fan H., Lu G., Bio-inspired multi-cell tubular structures approaching ideal energy absorption Performance, Materials and Design, 225, 111495, 2023.
  • 25. Wu F., Chen Y., Zhao S., Hong Y., Zhang Z., Zheng S., Mechanical properties and energy absorption of composite bio-inspired multi-cell tubes, Thin-Walled Structures, 184, 110451, 2023.
  • 26. Hao P., Du J., Energy absorption characteristics of bio-inspired honeycomb column thin-walled structure under impact loading. Journal of the Mechanical Behavior of Biomedical Materials, 79, 301–308, 2018.
  • 27. Yao R., Pang T., He S., Li Q., Zhang B., Sun G., A bio-inspired foam-filled multi-cell structural configuration for energy absorption, Composites Part B: Engineering, 238, 109801, 2022.
  • 28. Zhang L., Bai Z., Bai F., Crashworthiness design for bio-inspired multi-cell tubes with quadrilateral, hexagonal and octagonal sections, Thin-Walled Structures, 122, 42–51, 2018.
  • 29. Liu S., Tong Z., Tang Z., Liu Y., Zhang Z., Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads, Thin-Walled Structures, 88, 70–81, 2015.
  • 30. Yang X., Sun Y., Yang J., Pan Q., Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure, Thin-Walled Structures, 125, 1–11, 2018.
  • 31. Yang J., Gu D., Lin K., Yang Y., Ma C., Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: Numerical simulation and selective laser melting process, Journal of the Mechanical Behavior of Biomedical Materials, 91, 59–67, 2019.
  • 32. Karakuş, R., Tanık, Ç., Optimization of additive manufacturing by vacuum infusion method, Journal of Faculty of Engineering and Architecture of Gazi University, 38 (4), 2451-2463, 2023.
  • 33. Güleç, E., Evirgen, B., A scale effect on the geogrids produced with three-dimensional printer technology, Journal of Faculty of Engineering and Architecture of Gazi University, 38 (3), 1793-1804, 2023.
  • 34. Duman, B., Özsoy, K., A deep learning-based approach for defect detection in powder bed fusion additive manufacturing using transfer learning, Journal of Faculty of Engineering and Architecture of Gazi University, 37 (1), 361-375, 2022.
  • 35. Altın M., Acar E., Güler M. A., Crashworthiness optimization of hierarchical hexagonal honeycombs under out-of-plane impact, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235 (6), 963–974, 2021.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Murat Altın 0000-0002-2404-2614

Selin Arıcı 0009-0002-1719-1491

Project Number FYL-2021-7392
Early Pub Date November 27, 2023
Publication Date November 30, 2023
Submission Date April 25, 2023
Acceptance Date July 7, 2023
Published in Issue Year 2024 Volume: 39 Issue: 2

Cite

APA Altın, M., & Arıcı, S. (2023). Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 1303-1314. https://doi.org/10.17341/gazimmfd.1287380
AMA Altın M, Arıcı S. Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi. GUMMFD. November 2023;39(2):1303-1314. doi:10.17341/gazimmfd.1287380
Chicago Altın, Murat, and Selin Arıcı. “Eksenel yükler altında Bio-Ilhamlı Yapı Dolgulu Ince Cidarlı alüminyum Hibrit tüplerin çarpışma performanslarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 2 (November 2023): 1303-14. https://doi.org/10.17341/gazimmfd.1287380.
EndNote Altın M, Arıcı S (November 1, 2023) Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 1303–1314.
IEEE M. Altın and S. Arıcı, “Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi”, GUMMFD, vol. 39, no. 2, pp. 1303–1314, 2023, doi: 10.17341/gazimmfd.1287380.
ISNAD Altın, Murat - Arıcı, Selin. “Eksenel yükler altında Bio-Ilhamlı Yapı Dolgulu Ince Cidarlı alüminyum Hibrit tüplerin çarpışma performanslarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (November 2023), 1303-1314. https://doi.org/10.17341/gazimmfd.1287380.
JAMA Altın M, Arıcı S. Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi. GUMMFD. 2023;39:1303–1314.
MLA Altın, Murat and Selin Arıcı. “Eksenel yükler altında Bio-Ilhamlı Yapı Dolgulu Ince Cidarlı alüminyum Hibrit tüplerin çarpışma performanslarının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 2, 2023, pp. 1303-14, doi:10.17341/gazimmfd.1287380.
Vancouver Altın M, Arıcı S. Eksenel yükler altında bio-ilhamlı yapı dolgulu ince cidarlı alüminyum hibrit tüplerin çarpışma performanslarının incelenmesi. GUMMFD. 2023;39(2):1303-14.