Research Article
BibTex RIS Cite

2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors

Year 2024, Volume: 37 Issue: 1, 90 - 117, 01.03.2024
https://doi.org/10.35378/gujs.1241638

Abstract

Halogenated compounds, especially fluorine and chlorine, play a key role in drug development. They account for a large proportion of all approved drug molecules. The importance of these two halogens stems from their remarkable effects on biological activity and pharmacokinetic properties. The study presented here aims to give the results obtained by the DFT methods and in silico medicinal evaluations of a newly synthesized small molecule. The small molecule belongs to the Schiff base class of organic compounds and is substituted with halogen atoms. The tetrahalogenated compound (THSB) Schiff base, 2-(((2,4-dichlorophenyl)imino)methyl)-3,4-difluorophenol, was first synthesized via the classical condensation method and then characterized by spectroscopic techniques. The THSB optimized by the B3LYP method was evaluated in terms of geometrical parameters, surface area (MEP and Hirshfeld analysis) and secondary interaction analysis, NLO properties, and electronic properties (HOMO-LUMO and UV-Vis). Second, THSB was evaluated regarding medicinal chemistry, physicochemical and pharmacokinetic properties, and toxicity (ADMET). Then, we comprehensively investigated the potential biological targets of THSB. Using the results of the SwissSimilarity analysis, we investigated the antagonistic effects of THSB against serotonin 5-HT2A and dopamine D2 receptors. Docking results were compared with the known antipsychotics, clozapine and risperidone. THSB showed a higher antagonistic effect than clozapine for the D2 receptor. However, risperidone proved to be the most effective antagonist for both targets. The binding energies of THSB, risperidone, and clozapine were -8.30, -11.84, and -8.07 kcal/mol, respectively, for D2; those of THSB, risperidone, and clozapine were -6.94, -11.47, and -10.10 kcal/mol, respectively, for 5-HT2A.

Supporting Institution

None

Project Number

None

Thanks

I wish to thank Turan GÜÇLÜ for his technical help and valuable support.

References

  • [1] El-Zahed, M.M., El-Sonbati, A.Z., Ajadain, F.M.S., Diab, M.A., and Abou-Dobara, M.I., "Synthesis, spectroscopic characterization, molecular docking and antimicrobial activity of Cu(II), Co(II), Ni(II), Mn(II) and Cd(II) complexes with a tetradentate ONNO donor Schiff base ligand", Inorganic Chemistry Communications, 152: 110710, (2023).
  • [2] Tada, K., Ikegaki, C., Fuse, Y., Tateishi, K., Sogawa, H., and Sanda, F., "Optically active polyaromatic Schiff base adopting stable secondary structures", Polymer, 268: 125703, (2023).
  • [3] Ibrahim, S.M., Saeed, A.M., Elmoneam, W.R.A., and Mostafa, M.A., "Synthesis and characterization of new Schiff base bearing bis(pyrano[3,2-c]quinolinone): Efficient cationic dye adsorption from aqueous solution", Journal of Molecular Structure, 1284: 135364, (2023).
  • [4] Sayed, F.N., Ashmawy, A.M., Saad, S.M., Omar, M.M., and Mohamed, G.G., "Design, spectroscopic characterization, DFT, molecular docking, and different applications: Anti-corrosion and antioxidant of novel metal complexes derived from ofloxacin-based Schiff base", Journal of Organometallic Chemistry, 993: 122698, (2023).
  • [5] Zhang, J., and Mu, Y., "A Schiff based p-phenylenediimine polymer as high capacity anode materials for stable lithium ion batteries", Electrochimica Acta, 450: 142276, (2023).
  • [6] Hernandes, M.Z., Cavalcanti, S.M., Moreira, D.R., de Azevedo Junior, W.F., and Leite, A.C., "Halogen atoms in the modern medicinal chemistry: hints for the drug design", Current Drug Targets, 11(3): 303-14, (2010).
  • [7] Inoue, M., Sumii, Y., and Shibata, N., "Contribution of Organofluorine Compounds to Pharmaceuticals", America Chemical Society Omega, 5(19): 10633-10640, (2020).
  • [8] Purser, S., Moore, P.R., Swallow, S., and Gouverneur, V., "Fluorine in medicinal chemistry", Chemical Society Reviews, 37(2): 320-330, (2008).
  • [9] Shah, P., and Westwell, A.D., "The role of fluorine in medicinal chemistry", Journal of Enzyme Inhibition and Medicinal Chemistry, 22(5): 527-540, (2007).
  • [10] Hagmann, W.K., "The Many Roles for Fluorine in Medicinal Chemistry", Journal of Medicinal Chemistry, 51(15): 4359-4369, (2008).
  • [11] Ge, H., Zhang, Y., Yang, Z., Qiang, K., Chen, C., Sun, L., Chen, M., and Zhang, J., "Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands", Bioorganic & Medicinal Chemistry, 27(10): 2100-2111, (2019).
  • [12] Juza, R., Vojtechova, I., Stefkova-Mazochova, K., Dehaen, W., Petrasek, T., Prchal, L., Kobrlova, T., Janousek, J., Vlcek, P., Mezeiova, E., Svozil, D., Karasova, J.Z., Pejchal, J., Stark, H., Satala, G., Bojarski, A.J., Kubacka, M., Mogilski, S., Randakova, A., Musilek, K., Soukup, O., and Korabecny, J., "Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment", European Journal of Medicinal Chemistry, 232: 114193, (2022).
  • [13] Ahmadi, R., Sepehri, B., Ghavami, R., and Irani, M., "Robust and predictive QSAR models for predicting the D2, 5-HT1A, and 5-HT2A inhibition activities of fused tricyclic heterocycle piperazine (piperidine) derivatives as atypical antipsychotic drugs", Journal of Molecular Structure, 1259: 132753, (2022).
  • [14] Venkataramaiah, C., Lakshmi Priya, B., and Rajendra, W., "Perturbations in the catecholamine metabolism and protective effect of “3-(3, 4-dimethoxy phenyl)-1-4(methoxy phenyl) prop-2-en-1-one” during ketamine-induced schizophrenia: an in vivo and in silico studies", Journal of Biomolecular Structure and Dynamics, 39(10): 3523-3532, (2021).
  • [15] Masaguer, C.F., Raviña, E., Fontenla, J.A., Brea, J., Tristán, H., and Loza, M.I., "Butyrophenone analogues in the carbazole series as potential atypical antipsychotics: synthesis and determination of affinities at D2, 5-HT2A, 5-HT2B and 5-HT2C receptors", European Journal of Medicinal Chemistry, 35(1): 83-95, (2000).
  • [16] Zhu, C., Li, X., Zhao, B., Peng, W., Li, W., and Fu, W., "Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy", European Journal of Medicinal Chemistry, 193: 112214, (2020).
  • [17] Aranda, R., Villalba, K., Raviña, E., Masaguer, C.F., Brea, J., Areias, F., Domínguez, E., Selent, J., López, L., Sanz, F., Pastor, M., and Loza, M.I., "Synthesis, Binding Affinity, and Molecular Docking Analysis of New Benzofuranone Derivatives as Potential Antipsychotics", Journal of Medicinal Chemistry, 51(19): 6085-6094, (2008).
  • [18] Sheldrick, G.M., "SHELXT - Integrated space-group and crystal-structure determination", Acta Crystallographica Section A: Foundations of Crystallography, 71(1): 3-8, (2015).
  • [19] Westrip, S.P., "PublCIF: Software for editing, validating and formatting crystallographic information files", Journal of Applied Crystallography, 43(4): 920-925, (2010).
  • [20] Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and Van De Streek, J., "Mercury: Visualization and analysis of crystal structures", Journal of Applied Crystallography, 39(3): 453-457, (2006).
  • [21] Spek, A., "checkCIF validation ALERTS: what they mean and how to respond", Acta Crystallographica Section E, 76(1): 1-11, (2020).
  • [22] Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R., and Watson, D.G., "The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information", Acta Crystallographica Section B, 35(10): 2331-2339, (1979).
  • [23] Becke, A.D., "Density‐functional thermochemistry. III. The role of exact exchange", The Journal of Chemical Physics, 98(7): 5648-5652, (1993).
  • [24] Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., "Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions", The Journal of Chemical Physics, 72(1): 650-654, (1980).
  • [25] Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G., "gaussian 09, Revision d. 01, Gaussian", Inc., Wallingford CT, 201, (2009).
  • [26] Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., and Cao, D., "ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties", Nucleic Acids Research, 49(W1): W5-W14, (2021).
  • [27] Daina, A., Michielin, O., and Zoete, V., "SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules", Scientific Reports, 7(1): 42717, (2017).
  • [28] Banerjee, P., Eckert, A.O., Schrey, A.K., and Preissner, R., "ProTox-II: a webserver for the prediction of toxicity of chemicals", Nucleic Acids Research, 46(W1): W257-W263, (2018).
  • [29] Wang, L., Ma, C., Wipf, P., Liu, H., Su, W., and Xie, X.Q., "TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database", American Association of Pharmaceutical Sciences Journal, 15(2): 395-406, (2013).
  • [30] Awale, M., and Reymond, J.-L., "Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning", Journal of Chemical Information and Modeling, 59(1): 10-17, (2019).
  • [31] Bragina, M.E., Daina, A., Perez, M.A.S., Michielin, O., and Zoete, V., "The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience", International Journal of Molecular Sciences, 23(2), (2022).
  • [32] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., "The Protein Data Bank", Nucleic Acids Research, 28(1): 235-242, (2000).
  • [33] Wang, S., Che, T., Levit, A., Shoichet, B.K., Wacker, D., and Roth, B.L., "Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone", Nature, 555(7695): 269-273, (2018).
  • [34] Kimura, K.T., Asada, H., Inoue, A., Kadji, F.M.N., Im, D., Mori, C., Arakawa, T., Hirata, K., Nomura, Y., Nomura, N., Aoki, J., Iwata, S., and Shimamura, T., "Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine", Nature Structural & Molecular Biology, 26(2): 121-128, (2019).
  • [35] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility", Journal of computational chemistry, 30(16): 2785-2791, (2009).
  • [36] Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F., and Schroeder, M., "PLIP: fully automated protein–ligand interaction profiler", Nucleic Acids Research, 43(W1): W443-W447, (2015).
  • [37] O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R., "Open Babel: An open chemical toolbox", Journal of cheminformatics, 3(1): 33, (2011).
  • [38] Đorović, J., Marković, Z., Petrović, Z.D., Simijonović, D., and Petrović, V.P., "Theoretical analysis of the experimental UV-Vis absorption spectra of some phenolic Schiff bases", Molecular Physics, 115(19): 2460-2468, (2017).
  • [39] Singh, M., Anthal, S., Srijana, P.J., Narayana, B., Sarojini, B.K., Likhitha, U., Kamal, and Kant, R., "Novel supramolecular co-crystal of 3-aminobenzoic acid with 4-acetyl-pyridine: Synthesis, X-ray structure, DFT and Hirshfeld surface analysis", Journal of Molecular Structure, 1262: 133061, (2022).
  • [40] Ethiraj, J., Ajin, R., Sankaranarayanan, R.K., Sekar, R., Veeman, D., Nanjan, M.J., and Varghese, J.J., "Crystallographic and computational investigations of structural properties in phenyl and methoxy‑phenyl substituted 1,4 dihydropyridine derivatives", Journal of Molecular Structure, 1254: 132378, (2022).
  • [41] Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D., and Spackman, M., CrystalExplorer17. The University of Western Australia Australia. (2017).
  • [42] Singh, N., Fatima, A., Singh, M., kumar, M., Verma, I., Muthu, S., Siddiqui, N., and Javed, S., "Exploration of experimental, theoretical, Hirshfeld surface, molecular docking and electronic excitation studies of Menadione: A potent anti-cancer agent", Journal of Molecular Liquids, 351: 118670, (2022).
  • [43] Parte, M.K., Vishwakarma, P.K., Jaget, P.S., and Maurya, R.C., "Synthesis, spectral, FMOs and NLO properties based on DFT calculations of dioxidomolybdenum(VI) complex", Journal of Coordination Chemistry, 74(4-6): 584-597, (2021).
  • [44] Roy, R.K., Krishnamurti, S., Geerlings, P., and Pal, S., "Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds", The Journal of Physical Chemistry A, 102(21): 3746-3755, (1998).
  • [45] Prasad, S., and Ojha, D.P., "Geometric structures, vibrational spectroscopic and global reactivity descriptors of nematogens containing strong polar group- A comparative analysis using DFT, HF and MP2 methods", Molecular Crystals and Liquid Crystals, 666(1): 12-28, (2018).
  • [46] Innasiraj, A., Anandhi, B., Gnanadeepam, Y., Das, N., Paularokiadoss, F., Ilavarasi, A.V., Sheela, C.D., Ampasala, D.R., and Jeyakumar, T.C., "Experimental and theoretical studies of novel Schiff base based on diammino benzophenone with formyl chromone – BPAMC", Journal of Molecular Structure, 1265: 133450, (2022).
  • [47] Mandal, D., Maity, R., Beg, H., Salgado-Morán, G., and Misra, A., "Computation of global reactivity descriptors and first hyper polarisability as a function of torsional angle of donor–acceptor substituted biphenyl ring system", Molecular Physics, 116(4): 515-525, (2018).
  • [48] Katariya, K.D., Nakum, K.J., and Hagar, M., "New thiophene chalcones with ester and Schiff base mesogenic Cores: Synthesis, mesomorphic behaviour and DFT investigation", Journal of Molecular Liquids, 359: 119296, (2022).
  • [49] Manivel, S., S Gangadharappa, B., Elangovan, N., Thomas, R., Abu Ali, O.A., and Saleh, D.I., "Schiff base (Z)-4-((furan-2-ylmethylene)amino) benzenesulfonamide: Synthesis, solvent interactions through hydrogen bond, structural and spectral properties, quantum chemical modeling and biological studies", Journal of Molecular Liquids, 350: 118531, (2022).
  • [50] Meenukutty, M.S., Mohan, A.P., Vidya, V.G., and Viju Kumar, V.G., "Synthesis, characterization, DFT analysis and docking studies of a novel Schiff base using 5-bromo salicylaldehyde and β-alanine", Heliyon, 8(6): e09600, (2022).
  • [51] Shobana, D., Sudha, S., Ramarajan, D., and Dimić, D., "Synthesis, crystal structure, spectral characterization and Hirshfeld surface analysis of (E)-N′-(3-ethoxy-4-hydroxybenzylidene)-4-fluorobenzohydrazide single-crystal – a novel NLO active material", Journal of Molecular Structure, 1250: 131856, (2022).
  • [52] Guerroudj, A.R., Boukabcha, N., Benmohammed, A., Dege, N., Belkafouf, N.E.H., Khelloul, N., Djafri, A., and Chouaih, A., "Synthesis, crystal structure, vibrational spectral investigation, intermolecular interactions, chemical reactivity, NLO properties and molecular docking analysis on (E)-N-(4-nitrobenzylidene)-3-chlorobenzenamine: A combined experimental and theoretical study", Journal of Molecular Structure, 1240: 130589, (2021).
  • [53] Solo, P., and Arockia doss, M., "Synthesis, Single-Crystal XRD, Spectral and Computational Analysis of 2-(3,4-Dimethoxyphenyl)-1H-Phenanthro[9,10-d] Imidazole as Electron-Transport and NLO Material", Polycyclic Aromatic Compounds, 1-14, (2022).
  • [54] Jothi, A.I., Paul, M.W.B., and Alexander, V., "A comparative molecular structure – NLO activity study of ortho-bridged dibenzaldehydes: Synthesis, crystal structure, SHG, and DFT studies", Journal of Molecular Structure, 1250: 131776, (2022).
  • [55] van de Waterbeemd, H., and Gifford, E., "ADMET in silico modelling: towards prediction paradise?", Nature Reviews Drug Discovery, 2(3): 192-204, (2003).
  • [56] Venkatraman, V., "FP-ADMET: a compendium of fingerprint-based ADMET prediction models", Journal of cheminformatics, 13(1): 75, (2021).
  • [57] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings", Advanced Drug Delivery Reviews, 23(1): 3-25, (1997).
  • [58] Hughes, J.D., Blagg, J., Price, D.A., Bailey, S., DeCrescenzo, G.A., Devraj, R.V., Ellsworth, E., Fobian, Y.M., Gibbs, M.E., Gilles, R.W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., and Zhang, Y., "Physiochemical drug properties associated with in vivo toxicological outcomes", Bioorganic & Medicinal Chemistry Letters, 18(17): 4872-4875, (2008).
  • [59] Gleeson, M.P., "Generation of a Set of Simple, Interpretable ADMET Rules of Thumb", Journal of Medicinal Chemistry, 51(4): 817-834, (2008).
  • [60] Farah, A., "Atypicality of atypical antipsychotics", Prim Care Companion J Clin Psychiatry, 7(6): 268-74, (2005).
  • [61] Shi, L., Fang, R.Q., Zhu, Z.W., Yang, Y., Cheng, K., Zhong, W.Q., and Zhu, H.L., "Design and synthesis of potent inhibitors of beta-ketoacyl-acyl carrier protein synthase III (FabH) as potential antibacterial agents", European Journal of Medicinal Chemistry, 45(9): 4358-64, (2010).
  • [62] Misra, S., Pandeya, K.B., Tiwari, A.K., Ali, A.Z., Saradamani, T., Agawane, S.B., and Madhusudana, K., "Antihyperglycemic, α-glucosidase inhibitory and DPPH free radical scavenging activity of 5-bromosalicylaldehyde and schiff bases", Medicinal Chemistry Research, 20(9): 1431-1437, (2011).
  • [63] Chen, Y., Wen, D., Huang, Z., Huang, M., Luo, Y., Liu, B., Lu, H., Wu, Y., Peng, Y., and Zhang, J., "2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: Virtual screening, synthesis and biological evaluation", Bioorganic and Medicinal Chemistry Letters, 22(22): 6867-70, (2012).
  • [64] Popovic, D., Nuss, P., and Vieta, E., "Revisiting loxapine: a systematic review", Annals of General Psychiatry, 14: 15, (2015).
Year 2024, Volume: 37 Issue: 1, 90 - 117, 01.03.2024
https://doi.org/10.35378/gujs.1241638

Abstract

Project Number

None

References

  • [1] El-Zahed, M.M., El-Sonbati, A.Z., Ajadain, F.M.S., Diab, M.A., and Abou-Dobara, M.I., "Synthesis, spectroscopic characterization, molecular docking and antimicrobial activity of Cu(II), Co(II), Ni(II), Mn(II) and Cd(II) complexes with a tetradentate ONNO donor Schiff base ligand", Inorganic Chemistry Communications, 152: 110710, (2023).
  • [2] Tada, K., Ikegaki, C., Fuse, Y., Tateishi, K., Sogawa, H., and Sanda, F., "Optically active polyaromatic Schiff base adopting stable secondary structures", Polymer, 268: 125703, (2023).
  • [3] Ibrahim, S.M., Saeed, A.M., Elmoneam, W.R.A., and Mostafa, M.A., "Synthesis and characterization of new Schiff base bearing bis(pyrano[3,2-c]quinolinone): Efficient cationic dye adsorption from aqueous solution", Journal of Molecular Structure, 1284: 135364, (2023).
  • [4] Sayed, F.N., Ashmawy, A.M., Saad, S.M., Omar, M.M., and Mohamed, G.G., "Design, spectroscopic characterization, DFT, molecular docking, and different applications: Anti-corrosion and antioxidant of novel metal complexes derived from ofloxacin-based Schiff base", Journal of Organometallic Chemistry, 993: 122698, (2023).
  • [5] Zhang, J., and Mu, Y., "A Schiff based p-phenylenediimine polymer as high capacity anode materials for stable lithium ion batteries", Electrochimica Acta, 450: 142276, (2023).
  • [6] Hernandes, M.Z., Cavalcanti, S.M., Moreira, D.R., de Azevedo Junior, W.F., and Leite, A.C., "Halogen atoms in the modern medicinal chemistry: hints for the drug design", Current Drug Targets, 11(3): 303-14, (2010).
  • [7] Inoue, M., Sumii, Y., and Shibata, N., "Contribution of Organofluorine Compounds to Pharmaceuticals", America Chemical Society Omega, 5(19): 10633-10640, (2020).
  • [8] Purser, S., Moore, P.R., Swallow, S., and Gouverneur, V., "Fluorine in medicinal chemistry", Chemical Society Reviews, 37(2): 320-330, (2008).
  • [9] Shah, P., and Westwell, A.D., "The role of fluorine in medicinal chemistry", Journal of Enzyme Inhibition and Medicinal Chemistry, 22(5): 527-540, (2007).
  • [10] Hagmann, W.K., "The Many Roles for Fluorine in Medicinal Chemistry", Journal of Medicinal Chemistry, 51(15): 4359-4369, (2008).
  • [11] Ge, H., Zhang, Y., Yang, Z., Qiang, K., Chen, C., Sun, L., Chen, M., and Zhang, J., "Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands", Bioorganic & Medicinal Chemistry, 27(10): 2100-2111, (2019).
  • [12] Juza, R., Vojtechova, I., Stefkova-Mazochova, K., Dehaen, W., Petrasek, T., Prchal, L., Kobrlova, T., Janousek, J., Vlcek, P., Mezeiova, E., Svozil, D., Karasova, J.Z., Pejchal, J., Stark, H., Satala, G., Bojarski, A.J., Kubacka, M., Mogilski, S., Randakova, A., Musilek, K., Soukup, O., and Korabecny, J., "Novel D2/5-HT receptor modulators related to cariprazine with potential implication to schizophrenia treatment", European Journal of Medicinal Chemistry, 232: 114193, (2022).
  • [13] Ahmadi, R., Sepehri, B., Ghavami, R., and Irani, M., "Robust and predictive QSAR models for predicting the D2, 5-HT1A, and 5-HT2A inhibition activities of fused tricyclic heterocycle piperazine (piperidine) derivatives as atypical antipsychotic drugs", Journal of Molecular Structure, 1259: 132753, (2022).
  • [14] Venkataramaiah, C., Lakshmi Priya, B., and Rajendra, W., "Perturbations in the catecholamine metabolism and protective effect of “3-(3, 4-dimethoxy phenyl)-1-4(methoxy phenyl) prop-2-en-1-one” during ketamine-induced schizophrenia: an in vivo and in silico studies", Journal of Biomolecular Structure and Dynamics, 39(10): 3523-3532, (2021).
  • [15] Masaguer, C.F., Raviña, E., Fontenla, J.A., Brea, J., Tristán, H., and Loza, M.I., "Butyrophenone analogues in the carbazole series as potential atypical antipsychotics: synthesis and determination of affinities at D2, 5-HT2A, 5-HT2B and 5-HT2C receptors", European Journal of Medicinal Chemistry, 35(1): 83-95, (2000).
  • [16] Zhu, C., Li, X., Zhao, B., Peng, W., Li, W., and Fu, W., "Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy", European Journal of Medicinal Chemistry, 193: 112214, (2020).
  • [17] Aranda, R., Villalba, K., Raviña, E., Masaguer, C.F., Brea, J., Areias, F., Domínguez, E., Selent, J., López, L., Sanz, F., Pastor, M., and Loza, M.I., "Synthesis, Binding Affinity, and Molecular Docking Analysis of New Benzofuranone Derivatives as Potential Antipsychotics", Journal of Medicinal Chemistry, 51(19): 6085-6094, (2008).
  • [18] Sheldrick, G.M., "SHELXT - Integrated space-group and crystal-structure determination", Acta Crystallographica Section A: Foundations of Crystallography, 71(1): 3-8, (2015).
  • [19] Westrip, S.P., "PublCIF: Software for editing, validating and formatting crystallographic information files", Journal of Applied Crystallography, 43(4): 920-925, (2010).
  • [20] Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., and Van De Streek, J., "Mercury: Visualization and analysis of crystal structures", Journal of Applied Crystallography, 39(3): 453-457, (2006).
  • [21] Spek, A., "checkCIF validation ALERTS: what they mean and how to respond", Acta Crystallographica Section E, 76(1): 1-11, (2020).
  • [22] Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R., and Watson, D.G., "The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information", Acta Crystallographica Section B, 35(10): 2331-2339, (1979).
  • [23] Becke, A.D., "Density‐functional thermochemistry. III. The role of exact exchange", The Journal of Chemical Physics, 98(7): 5648-5652, (1993).
  • [24] Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., "Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions", The Journal of Chemical Physics, 72(1): 650-654, (1980).
  • [25] Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., and Petersson, G., "gaussian 09, Revision d. 01, Gaussian", Inc., Wallingford CT, 201, (2009).
  • [26] Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., and Cao, D., "ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties", Nucleic Acids Research, 49(W1): W5-W14, (2021).
  • [27] Daina, A., Michielin, O., and Zoete, V., "SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules", Scientific Reports, 7(1): 42717, (2017).
  • [28] Banerjee, P., Eckert, A.O., Schrey, A.K., and Preissner, R., "ProTox-II: a webserver for the prediction of toxicity of chemicals", Nucleic Acids Research, 46(W1): W257-W263, (2018).
  • [29] Wang, L., Ma, C., Wipf, P., Liu, H., Su, W., and Xie, X.Q., "TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database", American Association of Pharmaceutical Sciences Journal, 15(2): 395-406, (2013).
  • [30] Awale, M., and Reymond, J.-L., "Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning", Journal of Chemical Information and Modeling, 59(1): 10-17, (2019).
  • [31] Bragina, M.E., Daina, A., Perez, M.A.S., Michielin, O., and Zoete, V., "The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience", International Journal of Molecular Sciences, 23(2), (2022).
  • [32] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., "The Protein Data Bank", Nucleic Acids Research, 28(1): 235-242, (2000).
  • [33] Wang, S., Che, T., Levit, A., Shoichet, B.K., Wacker, D., and Roth, B.L., "Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone", Nature, 555(7695): 269-273, (2018).
  • [34] Kimura, K.T., Asada, H., Inoue, A., Kadji, F.M.N., Im, D., Mori, C., Arakawa, T., Hirata, K., Nomura, Y., Nomura, N., Aoki, J., Iwata, S., and Shimamura, T., "Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine", Nature Structural & Molecular Biology, 26(2): 121-128, (2019).
  • [35] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility", Journal of computational chemistry, 30(16): 2785-2791, (2009).
  • [36] Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F., and Schroeder, M., "PLIP: fully automated protein–ligand interaction profiler", Nucleic Acids Research, 43(W1): W443-W447, (2015).
  • [37] O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R., "Open Babel: An open chemical toolbox", Journal of cheminformatics, 3(1): 33, (2011).
  • [38] Đorović, J., Marković, Z., Petrović, Z.D., Simijonović, D., and Petrović, V.P., "Theoretical analysis of the experimental UV-Vis absorption spectra of some phenolic Schiff bases", Molecular Physics, 115(19): 2460-2468, (2017).
  • [39] Singh, M., Anthal, S., Srijana, P.J., Narayana, B., Sarojini, B.K., Likhitha, U., Kamal, and Kant, R., "Novel supramolecular co-crystal of 3-aminobenzoic acid with 4-acetyl-pyridine: Synthesis, X-ray structure, DFT and Hirshfeld surface analysis", Journal of Molecular Structure, 1262: 133061, (2022).
  • [40] Ethiraj, J., Ajin, R., Sankaranarayanan, R.K., Sekar, R., Veeman, D., Nanjan, M.J., and Varghese, J.J., "Crystallographic and computational investigations of structural properties in phenyl and methoxy‑phenyl substituted 1,4 dihydropyridine derivatives", Journal of Molecular Structure, 1254: 132378, (2022).
  • [41] Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D., and Spackman, M., CrystalExplorer17. The University of Western Australia Australia. (2017).
  • [42] Singh, N., Fatima, A., Singh, M., kumar, M., Verma, I., Muthu, S., Siddiqui, N., and Javed, S., "Exploration of experimental, theoretical, Hirshfeld surface, molecular docking and electronic excitation studies of Menadione: A potent anti-cancer agent", Journal of Molecular Liquids, 351: 118670, (2022).
  • [43] Parte, M.K., Vishwakarma, P.K., Jaget, P.S., and Maurya, R.C., "Synthesis, spectral, FMOs and NLO properties based on DFT calculations of dioxidomolybdenum(VI) complex", Journal of Coordination Chemistry, 74(4-6): 584-597, (2021).
  • [44] Roy, R.K., Krishnamurti, S., Geerlings, P., and Pal, S., "Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds", The Journal of Physical Chemistry A, 102(21): 3746-3755, (1998).
  • [45] Prasad, S., and Ojha, D.P., "Geometric structures, vibrational spectroscopic and global reactivity descriptors of nematogens containing strong polar group- A comparative analysis using DFT, HF and MP2 methods", Molecular Crystals and Liquid Crystals, 666(1): 12-28, (2018).
  • [46] Innasiraj, A., Anandhi, B., Gnanadeepam, Y., Das, N., Paularokiadoss, F., Ilavarasi, A.V., Sheela, C.D., Ampasala, D.R., and Jeyakumar, T.C., "Experimental and theoretical studies of novel Schiff base based on diammino benzophenone with formyl chromone – BPAMC", Journal of Molecular Structure, 1265: 133450, (2022).
  • [47] Mandal, D., Maity, R., Beg, H., Salgado-Morán, G., and Misra, A., "Computation of global reactivity descriptors and first hyper polarisability as a function of torsional angle of donor–acceptor substituted biphenyl ring system", Molecular Physics, 116(4): 515-525, (2018).
  • [48] Katariya, K.D., Nakum, K.J., and Hagar, M., "New thiophene chalcones with ester and Schiff base mesogenic Cores: Synthesis, mesomorphic behaviour and DFT investigation", Journal of Molecular Liquids, 359: 119296, (2022).
  • [49] Manivel, S., S Gangadharappa, B., Elangovan, N., Thomas, R., Abu Ali, O.A., and Saleh, D.I., "Schiff base (Z)-4-((furan-2-ylmethylene)amino) benzenesulfonamide: Synthesis, solvent interactions through hydrogen bond, structural and spectral properties, quantum chemical modeling and biological studies", Journal of Molecular Liquids, 350: 118531, (2022).
  • [50] Meenukutty, M.S., Mohan, A.P., Vidya, V.G., and Viju Kumar, V.G., "Synthesis, characterization, DFT analysis and docking studies of a novel Schiff base using 5-bromo salicylaldehyde and β-alanine", Heliyon, 8(6): e09600, (2022).
  • [51] Shobana, D., Sudha, S., Ramarajan, D., and Dimić, D., "Synthesis, crystal structure, spectral characterization and Hirshfeld surface analysis of (E)-N′-(3-ethoxy-4-hydroxybenzylidene)-4-fluorobenzohydrazide single-crystal – a novel NLO active material", Journal of Molecular Structure, 1250: 131856, (2022).
  • [52] Guerroudj, A.R., Boukabcha, N., Benmohammed, A., Dege, N., Belkafouf, N.E.H., Khelloul, N., Djafri, A., and Chouaih, A., "Synthesis, crystal structure, vibrational spectral investigation, intermolecular interactions, chemical reactivity, NLO properties and molecular docking analysis on (E)-N-(4-nitrobenzylidene)-3-chlorobenzenamine: A combined experimental and theoretical study", Journal of Molecular Structure, 1240: 130589, (2021).
  • [53] Solo, P., and Arockia doss, M., "Synthesis, Single-Crystal XRD, Spectral and Computational Analysis of 2-(3,4-Dimethoxyphenyl)-1H-Phenanthro[9,10-d] Imidazole as Electron-Transport and NLO Material", Polycyclic Aromatic Compounds, 1-14, (2022).
  • [54] Jothi, A.I., Paul, M.W.B., and Alexander, V., "A comparative molecular structure – NLO activity study of ortho-bridged dibenzaldehydes: Synthesis, crystal structure, SHG, and DFT studies", Journal of Molecular Structure, 1250: 131776, (2022).
  • [55] van de Waterbeemd, H., and Gifford, E., "ADMET in silico modelling: towards prediction paradise?", Nature Reviews Drug Discovery, 2(3): 192-204, (2003).
  • [56] Venkatraman, V., "FP-ADMET: a compendium of fingerprint-based ADMET prediction models", Journal of cheminformatics, 13(1): 75, (2021).
  • [57] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings", Advanced Drug Delivery Reviews, 23(1): 3-25, (1997).
  • [58] Hughes, J.D., Blagg, J., Price, D.A., Bailey, S., DeCrescenzo, G.A., Devraj, R.V., Ellsworth, E., Fobian, Y.M., Gibbs, M.E., Gilles, R.W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., and Zhang, Y., "Physiochemical drug properties associated with in vivo toxicological outcomes", Bioorganic & Medicinal Chemistry Letters, 18(17): 4872-4875, (2008).
  • [59] Gleeson, M.P., "Generation of a Set of Simple, Interpretable ADMET Rules of Thumb", Journal of Medicinal Chemistry, 51(4): 817-834, (2008).
  • [60] Farah, A., "Atypicality of atypical antipsychotics", Prim Care Companion J Clin Psychiatry, 7(6): 268-74, (2005).
  • [61] Shi, L., Fang, R.Q., Zhu, Z.W., Yang, Y., Cheng, K., Zhong, W.Q., and Zhu, H.L., "Design and synthesis of potent inhibitors of beta-ketoacyl-acyl carrier protein synthase III (FabH) as potential antibacterial agents", European Journal of Medicinal Chemistry, 45(9): 4358-64, (2010).
  • [62] Misra, S., Pandeya, K.B., Tiwari, A.K., Ali, A.Z., Saradamani, T., Agawane, S.B., and Madhusudana, K., "Antihyperglycemic, α-glucosidase inhibitory and DPPH free radical scavenging activity of 5-bromosalicylaldehyde and schiff bases", Medicinal Chemistry Research, 20(9): 1431-1437, (2011).
  • [63] Chen, Y., Wen, D., Huang, Z., Huang, M., Luo, Y., Liu, B., Lu, H., Wu, Y., Peng, Y., and Zhang, J., "2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: Virtual screening, synthesis and biological evaluation", Bioorganic and Medicinal Chemistry Letters, 22(22): 6867-70, (2012).
  • [64] Popovic, D., Nuss, P., and Vieta, E., "Revisiting loxapine: a systematic review", Annals of General Psychiatry, 14: 15, (2015).
There are 64 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Songül Şahin 0000-0003-4713-3137

Project Number None
Early Pub Date August 1, 2023
Publication Date March 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 1

Cite

APA Şahin, S. (2024). 2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors. Gazi University Journal of Science, 37(1), 90-117. https://doi.org/10.35378/gujs.1241638
AMA Şahin S. 2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors. Gazi University Journal of Science. March 2024;37(1):90-117. doi:10.35378/gujs.1241638
Chicago Şahin, Songül. “2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-Difluorophenol: X-Ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors”. Gazi University Journal of Science 37, no. 1 (March 2024): 90-117. https://doi.org/10.35378/gujs.1241638.
EndNote Şahin S (March 1, 2024) 2-(2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors. Gazi University Journal of Science 37 1 90–117.
IEEE S. Şahin, “2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors”, Gazi University Journal of Science, vol. 37, no. 1, pp. 90–117, 2024, doi: 10.35378/gujs.1241638.
ISNAD Şahin, Songül. “2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-Difluorophenol: X-Ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors”. Gazi University Journal of Science 37/1 (March 2024), 90-117. https://doi.org/10.35378/gujs.1241638.
JAMA Şahin S. 2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors. Gazi University Journal of Science. 2024;37:90–117.
MLA Şahin, Songül. “2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-Difluorophenol: X-Ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors”. Gazi University Journal of Science, vol. 37, no. 1, 2024, pp. 90-117, doi:10.35378/gujs.1241638.
Vancouver Şahin S. 2-(((2,4-Dichlorophenyl)imino)methyl)-3,4-difluorophenol: X-ray, DFT, MEP, HOMO-LUMO, NLO, Hirshfeld Surfaces, ADMET Profiling, Target Identification, Antipsychotic Activity Against Dopamine D2 and Serotonin 5-HT2A Receptors. Gazi University Journal of Science. 2024;37(1):90-117.