Research Article
BibTex RIS Cite

PIDA Denetleyici Analiz Simülatörü

Year 2025, Volume: 13 Issue: 2, 526 - 537, 30.06.2025
https://doi.org/10.29109/gujsc.1608341

Abstract

Oransal-İntegral-Türev (PID), endüstriyel kontrol sistemlerinde yaygın olarak kullanılan geleneksel bir denetleyici türüdür. Ancak, bazen daha yüksek dereceli sistemleri kontrol etmede yetersiz kalabilmektedirler. Bu durumlarda Oransal-İntegral-Türev-İvme (PIDA) denetleyiciler tercih edilebilirler. Bu çalışmada; farklı tip PIDA denetleyicilerle kontrol sistemleri simülasyonlarını doğru, etkili, hızlı ve basit bir şekilde gerçekleştiren, tek veya karşılaştırmalı sayısal ve grafiksel sonuçlar (performans parametreleri, zaman ve frekans domeni cevapları vb.) üreten, kullanıcı dostu bir arayüze sahip bir yazılım aracı tasarlanmıştır. Geliştirilen simülatör, kullanım kolaylığı ve içeriğiyle bu alandaki tüm öğrenciler, mühendisler ve kullanıcılar için uygundur.

References

  • [1] O'dwyer, A., (2009). Handbook of PI and PID controller tuning rules (third edition). London: Imperial College Press.
  • [2] Åström K.J. and Hägglund T. (2006). Advanced PID Control. ISA-The Instrumentation, Systems and Automation Society.
  • [3] Jung S. and Dorf R.C., Novel analytic technique for PID and PIDA controller design, IFAC Proceedings Volumes, 29 No. 1 (1996) 1146-1151. doi: 10.1016/S1474-6670(17)57819-2
  • [4] Jung S. and Dorf R.C., Analytic PIDA controller design technique for a third order system, Proceedings of 35th IEEE Conference on Decision and Control, (1996), 2513-2518. doi: 10.1109/CDC.1996.573472
  • [5] Patu P., Jongkol L, Kitti T., Noriyuki K., Shunji M., PIDA controller design by CDM, Proceedings of the 13th KACC, (1998) 395-400.
  • [6] Dal-Young H., Ihn-Yong L., Young-Seung C., Young-Do L., Boo-Kwi C., The design of PIDA controller with pre-compensator, 2001 IEEE International Symposium on Industrial Electronics Proceedings (ISIE 2001), (2001) 798-804. doi: 10.1109/ISIE.2001.931570
  • [7] Ukakimaparn P., Pannil P., Boonchuay P., Trisuwannawat T., PIDA controller designed by Kitti's method, 2009 ICROS-SICE International Joint Conference, (2009) 1547-1550.
  • [8] Sambariya D.K., Paliwal D., Comparative design and analysis of PIDA controller using Kitti’s and Jung-Dorf approach for third order practical systems, Journal of Advances in Mathematics and Computer Science, 16 No. 5 (2016) 1-16. doi: 10.9734/BJMCS/2016/26223
  • [9] Bhandari M. and Rathore A., Comparative study of design of PIDA controller for induction motor, 2016 10th International Conference on Intelligent Systems and Control (ISCO), (2016) 1-5. doi: 10.1109/ISCO.2016.7726968
  • [10] Kumar M., Hote Y.V., Robust CDA-PIDA control scheme for load frequency control of interconnected power systems, IFAC-PapersOnLine, 51 No. 4 (2018) 616-621. doi: 10.1016/j.ifacol.2018.06.164
  • [11] Jitwang T., Nawikavatan A., Puangdownreong D., Optimal PIDA controller design for three-tank liquid-level control system with model uncertainty by cuckoo search, International Journal of Circuits, Systems and Signal Processing, 13 (2019) 60-65.
  • [12] Kumar M. and Hote, Y.V., Graphic RCRA‐PIDA tuning based on maximum sensitivity for automatic generation control of thermal and hydro power systems, IET Generation, Transmission & Distribution, 14 No. 26 (2020) 6427-6439. doi: 10.1049/iet-gtd.2020.0618
  • [13] Kumar M. and Hote, Y.V., Maximum sensitivity-constrained coefficient diagram method-based PIDA controller design: application for load frequency control of an isolated microgrid, Electrical Engineering, 103 No. 5 (2021) 2415-2429. doi: 10.1007/s00202-021-01226-4
  • [14] Kumar M., Hote Y.V., Sikander A., A novel cascaded CDM-IMC based PIDA controller design and its application, 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), (2023) 1-7. doi: 10.1109/GlobConHT56829.2023.10087714
  • [15] Sahib M.A., A novel optimal PID plus second order derivative controller for AVR system, Engineering Science and Technology, An International Journal, 18 No. 2 (2015) 194-206. doi: 10.1016/j.jestch.2014.11.006
  • [16] Hlangnamthip S. and Puangdownreong D., Optimal PIDA controller design for Maglev vehicle suspension system by Lévy-Flight Firefly algorithm, SWU Engineering Journal, 14 No. 1 (2019) 12-22.
  • [17] Romsai W. and Nawikavatan A., Optimal PIDA controller design for quarter car suspension system by intensified current search, 2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE), (2019) 1-5. doi: 10.1109/ICTKE47035.2019.8966863
  • [18] Kumar M. and Hote Y.V., A novel PIDA controller design for a single-axis gimbal system, 2020 IEEE 17th India Council International Conference (INDICON), (2020) 1-6. doi: 10.1109/INDICON49873.2020.9342153
  • [19] Huba M., Bistak P., Vrancic D., Optimizing constrained series PIDA controller for speed loops inspired by Ziegler-Nichols, 2023 International Conference on Electrical Drives and Power Electronics (EDPE), (2023) 1-6. doi: 10.1109/EDPE58625.2023.10274033
  • [20] Huba M., Bistak P., Vrancic D., Parametrization and optimal tuning of constrained series PIDA controller for IPDT models, Mathematics, 11 No. 20 (2023) 4229. doi: 10.3390/math11204229
  • [21] Huba M., Bistak P., Vrancic D., Series PIDA controller design for IPDT processes, Applied Sciences, 13 No. 4 (2023) 2040. doi: 10.3390/app13042040
  • [22] Huba M., Bistak P., Brieznik J., Vrancic D., Constrained series PI, PID and PIDA controller design inspired by Ziegler-Nichols, Power Electronics and Drives, 9 No. 1 (2024) 331-346. doi: 10.2478/pead-2024-0021
  • [23] Huba M., Filtered PIDA controller for the double integrator plus dead time, IFAC-PapersOnLine, 52 No. 27 (2019) 106-113. doi: 10.1016/j.ifacol.2019.12.741
  • [24] Huba M. and Vrančič D., Comparing filtered PI, PID and PIDD2 control for the FOTD plants, IFAC-PapersOnLine, 51 No. 4 (2018) 954-959. doi: 10.1016/j.ifacol.2018.06.099
  • [25] Heo J.P., Lim S., Im C.G., Ryu K.H., Sung S.W., New non-interactive form of the proportional-integral-derivative-acceleration (PIDA) controller and its explicit tuning rule, Korean Journal of Chemical Engineering, 40 (2023) 1277-1283. doi: 10.1007/s11814-022-1356-0
  • [26] Hu X., Hou G., Tan W., Tuning of PIDD2 controllers for oscillatory systems with time delays, Frontiers in Control Engineering, 3 (2023) 1-17. doi: 10.3389/fcteg.2022.1083419
  • [27] Hu X., Tan W., Hou G., Tuning of PID/PIDD2 controllers for second-order oscillatory systems with time delays, Electronics, 12 No. 14 (2023) 3168. doi: 10.3390/electronics12143168
  • [28] Li Z., Zhang H., Tan W., Comparison of PI/PID/PIDD2 controllers for higher order processes, IFAC-PapersOnLine, 58 No. 7 (2024) 340-345. doi: 10.1016/j.ifacol.2024.08.085
  • [29] Hu X., Tan W., Hou G., PIDD2 control of large wind turbines pitch angle, Energies, 16 No. 13 (2023) 1-22. doi: 10.3390/en16135096
  • [30] Kumar M. and Hote Y.V., Robust IMC-PIDA controller design for load frequency control of a time delayed power system, 2019 IEEE 58th Conference on Decision and Control (CDC), (2019) 8380-8385. doi: 10.1109/CDC40024.2019.9029259
  • [31] Kumar M. and Hote Y.V., Robust PIDD2 controller design for perturbed load frequency control of an interconnected time-delayed power systems, IEEE Transactions on Control Systems Technology, 29 No. 6 (2021) 2662-2669. doi: 10.1109/TCST.2020.3043447
  • [32] Anwar M.N., Siddiqui M.A., Laskar S.H., Yadav A., PIDA controller design for higher order stable process with inverse response characteristic, 2018 International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), (2018) 236-240. doi: 10.1109/CCTES.2018.8674158
  • [33] Huba M. and Vrancic D., Extending the model-based controller design to higher-order plant models and measurement noise, Symmetry, 13 No. 5 (2021) 1-44. doi: 10.3390/sym13050798
  • [34] Arulvadivu J., Manoharan S., Lal Raja Singh R., Giriprasad S., Optimal design of proportional integral derivative acceleration controller for higher‐order nonlinear time delay system using m‐MBOA technique, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35 No. 6 (2022) 1-24. doi: 10.1002/jnm.3016
  • [35] Visioli A. and Sánchez-Moreno J., IMC-based tuning of PIDA controllers: a comparison with PID control, IFAC-PapersOnLine, 58 No. 7 (2024) 1-6. doi: 10.1016/j.ifacol.2024.08.001
  • [36] Visioli A. and Sánchez-Moreno J., A relay-feedback automatic tuning methodology of PIDA controllers for high-order processes, International Journal of Control, 97 No. 1 (2024) 51-58. doi: 10.1080/00207179.2022.2135019
  • [37] Visioli A. and Sanchez-Moreno J., Design of PIDA controllers for high-order integral processes, 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), (2023) 1-8. doi: 10.1109/ETFA54631.2023.10275379
  • [38] Kumar M. and Hote Y.V., PIDD2 Controller design based on internal model control approach for a non-ideal DC-DC boost converter, 2021 IEEE Texas Power and Energy Conference (TPEC), (2021) 1-6. doi: 10.1109/TPEC51183.2021.9384954
  • [39] Kumar M. and Hote Y.V. Real-time performance analysis of PIDD2 controller for nonlinear twin rotor TITO aerodynamical system, Journal of Intelligent & Robotic Systems, 101 No. 55 (2021) 1-16. doi: 10.1007/s10846-021-01322-4
  • [40] Kumar M., Mahadeva R., Patole S.P., Non-fragile PIDA controller design for time-delayed uncertain system, IEEE Access, 12 (2024) 81156-81169. doi: 10.1109/ACCESS.2024.3411146
  • [41] Zandavi S.M., Chung V., Anaissi A., Accelerated control using stochastic dual simplex algorithm and genetic filter for drone application, IEEE Transactions on Aerospace and Electronic Systems, 58 No. 3 (2022) 2180-2191. doi: 10.1109/TAES.2021.3134751
  • [42] Saikia L.C. and Sinha, N., Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller, International Journal of Electrical Power & Energy Systems, 80 (2016) 52-63. doi: 10.1016/j.ijepes.2016.01.037
  • [43] Kumar M., Altaf A., Biswas, D., Cheetah optimizer based PIDA controller design for cyber-physical power system under cyberattacks and uncertainty, 2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), (2023) 1-5. doi: 10.1109/STPEC59253.2023.10431040
  • [44] Kumar M., Resilient PIDA control design based frequency regulation of interconnected time-delayed microgrid under cyber-attacks, IEEE Transactions on Industry Applications, 59 No. 1 (2023) 492-502. doi: 10.1109/TIA.2022.3205280
  • [45] Huba M., Vrancic D., Bistak P., PID control with higher order derivative degrees for IPDT plant models, IEEE Access, 9 (2021) 2478-2495. doi: 10.1109/ACCESS.2020.3047351
  • [46] Bistak P., Huba M., Vrancic D., Chamraz S., IPDT Model-Based Ziegler–Nichols Tuning Generalized to Controllers with Higher-Order Derivatives, Sensors, 23 No. 8 (2023) 3787. doi: 10.3390/s23083787
  • [47] Huba M., Vrancic D., Bistak P., Series PID control with higher-order derivatives for processes approximated by IPDT models, IEEE Transactions on Automation Science and Engineering, 21 No. 3 (2024) 4406-4418. doi: 10.1109/TASE.2023.3296201
  • [48] Huba M., Bistak P., Brieznik J., Vrancic D., Constrained series PI, PID and PIDA controller design Inspired by Ziegler-Nichols, Power Electronics and Drives, 9 No. 1 (2024) 331-346. doi: 10.2478/pead-2024-0021
  • [49] Vrančić D. and Huba M., High-order filtered PID controller tuning based on magnitude optimum, Mathematics, 9 No. 12 (2021) 1-24. soi: 10.3390/math9121340
  • [50] Bisták P., Disturbance analysis virtual laboratory for PID controllers with higher derivative degrees, 2018 16th International Conference on Emerging eLearning Technologies and Applications (ICETA), (2018) 69-74. doi: 10.1109/ICETA.2018.8572065
  • [51] Bisták P. and Huba M., Analysis of higher derivative degree PID controllers via virtual laboratory, 2019 27th Mediterranean Conference on Control and Automation (MED), (2019) 356-361. doi: 10.1109/MED.2019.8798527
  • [52] Bisták P. and Huba M., Interactive software tool for design of higher derivative degree PID controllers, IFAC-PapersOnLine, 53 No. 20 (2020) 17198-17203. doi: 10.1016/j.ifacol.2020.12.1736
  • [53] Ferrari M. and Visioli A., A software tool to understand the design of PIDA controllers, IFAC-PapersOnLine, 55 No. 17 (2022) 249-254. doi: 10.1016/j.ifacol.2022.09.287
  • [54] Žáková K., Matišák J., Šefčík J., Contribution to PID and PIDA interactive educational tools, IFAC-PapersOnLine, 58 No. 7 (2024) 115-119. doi: 10.1016/j.ifacol.2024.08.020
  • [55] Numsomran A., Sriratana W., Julsereewong P., Kongratana V., Tirasesth K., I-PDA controller designed by CDM, Proceedings of the 14th KACC, (1999) 284-287.
  • [56] The MathWorks Inc. (2022). MATLAB, App Designer.
  • [57] Bingül Z. and Karahan O., A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system, Journal of the Franklin Institute, 355 No. 13 (2018) 5534-5559. doi: 10.1016/j.jfranklin.2018.05.056
  • [58] İzci D., Ekinci S., Mirjalili S., Optimal PID plus second-order derivative controller design for AVR system using a modified Runge Kutta optimizer and Bode’s ideal reference model, International Journal of Dynamics and Control, 11 No. 3 (2023) 1247-1264. doi: 10.1007/s40435-022-01046-9

The PIDA Controller Analysis Simulator

Year 2025, Volume: 13 Issue: 2, 526 - 537, 30.06.2025
https://doi.org/10.29109/gujsc.1608341

Abstract

The Proportional-Integral-Derivative (PID) is a traditional controller type widely used in industrial control systems. However, sometimes they may be insufficient in controlling higher degree systems. In these cases, the Proportional-Integral-Derivative-Acceleration (PIDA) controllers can be preferred. In this study; a software tool with a user-friendly interface has been designed that performs control systems simulations with different type PIDA controllers in an accurate, effective, fast and simple manner, produced single or comparative numerical and graphical results (performance parameters, time and frequency domain responses, etc.). The developed simulator with ease and contents is suitable for all students, engineers, and users from this area.

References

  • [1] O'dwyer, A., (2009). Handbook of PI and PID controller tuning rules (third edition). London: Imperial College Press.
  • [2] Åström K.J. and Hägglund T. (2006). Advanced PID Control. ISA-The Instrumentation, Systems and Automation Society.
  • [3] Jung S. and Dorf R.C., Novel analytic technique for PID and PIDA controller design, IFAC Proceedings Volumes, 29 No. 1 (1996) 1146-1151. doi: 10.1016/S1474-6670(17)57819-2
  • [4] Jung S. and Dorf R.C., Analytic PIDA controller design technique for a third order system, Proceedings of 35th IEEE Conference on Decision and Control, (1996), 2513-2518. doi: 10.1109/CDC.1996.573472
  • [5] Patu P., Jongkol L, Kitti T., Noriyuki K., Shunji M., PIDA controller design by CDM, Proceedings of the 13th KACC, (1998) 395-400.
  • [6] Dal-Young H., Ihn-Yong L., Young-Seung C., Young-Do L., Boo-Kwi C., The design of PIDA controller with pre-compensator, 2001 IEEE International Symposium on Industrial Electronics Proceedings (ISIE 2001), (2001) 798-804. doi: 10.1109/ISIE.2001.931570
  • [7] Ukakimaparn P., Pannil P., Boonchuay P., Trisuwannawat T., PIDA controller designed by Kitti's method, 2009 ICROS-SICE International Joint Conference, (2009) 1547-1550.
  • [8] Sambariya D.K., Paliwal D., Comparative design and analysis of PIDA controller using Kitti’s and Jung-Dorf approach for third order practical systems, Journal of Advances in Mathematics and Computer Science, 16 No. 5 (2016) 1-16. doi: 10.9734/BJMCS/2016/26223
  • [9] Bhandari M. and Rathore A., Comparative study of design of PIDA controller for induction motor, 2016 10th International Conference on Intelligent Systems and Control (ISCO), (2016) 1-5. doi: 10.1109/ISCO.2016.7726968
  • [10] Kumar M., Hote Y.V., Robust CDA-PIDA control scheme for load frequency control of interconnected power systems, IFAC-PapersOnLine, 51 No. 4 (2018) 616-621. doi: 10.1016/j.ifacol.2018.06.164
  • [11] Jitwang T., Nawikavatan A., Puangdownreong D., Optimal PIDA controller design for three-tank liquid-level control system with model uncertainty by cuckoo search, International Journal of Circuits, Systems and Signal Processing, 13 (2019) 60-65.
  • [12] Kumar M. and Hote, Y.V., Graphic RCRA‐PIDA tuning based on maximum sensitivity for automatic generation control of thermal and hydro power systems, IET Generation, Transmission & Distribution, 14 No. 26 (2020) 6427-6439. doi: 10.1049/iet-gtd.2020.0618
  • [13] Kumar M. and Hote, Y.V., Maximum sensitivity-constrained coefficient diagram method-based PIDA controller design: application for load frequency control of an isolated microgrid, Electrical Engineering, 103 No. 5 (2021) 2415-2429. doi: 10.1007/s00202-021-01226-4
  • [14] Kumar M., Hote Y.V., Sikander A., A novel cascaded CDM-IMC based PIDA controller design and its application, 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), (2023) 1-7. doi: 10.1109/GlobConHT56829.2023.10087714
  • [15] Sahib M.A., A novel optimal PID plus second order derivative controller for AVR system, Engineering Science and Technology, An International Journal, 18 No. 2 (2015) 194-206. doi: 10.1016/j.jestch.2014.11.006
  • [16] Hlangnamthip S. and Puangdownreong D., Optimal PIDA controller design for Maglev vehicle suspension system by Lévy-Flight Firefly algorithm, SWU Engineering Journal, 14 No. 1 (2019) 12-22.
  • [17] Romsai W. and Nawikavatan A., Optimal PIDA controller design for quarter car suspension system by intensified current search, 2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE), (2019) 1-5. doi: 10.1109/ICTKE47035.2019.8966863
  • [18] Kumar M. and Hote Y.V., A novel PIDA controller design for a single-axis gimbal system, 2020 IEEE 17th India Council International Conference (INDICON), (2020) 1-6. doi: 10.1109/INDICON49873.2020.9342153
  • [19] Huba M., Bistak P., Vrancic D., Optimizing constrained series PIDA controller for speed loops inspired by Ziegler-Nichols, 2023 International Conference on Electrical Drives and Power Electronics (EDPE), (2023) 1-6. doi: 10.1109/EDPE58625.2023.10274033
  • [20] Huba M., Bistak P., Vrancic D., Parametrization and optimal tuning of constrained series PIDA controller for IPDT models, Mathematics, 11 No. 20 (2023) 4229. doi: 10.3390/math11204229
  • [21] Huba M., Bistak P., Vrancic D., Series PIDA controller design for IPDT processes, Applied Sciences, 13 No. 4 (2023) 2040. doi: 10.3390/app13042040
  • [22] Huba M., Bistak P., Brieznik J., Vrancic D., Constrained series PI, PID and PIDA controller design inspired by Ziegler-Nichols, Power Electronics and Drives, 9 No. 1 (2024) 331-346. doi: 10.2478/pead-2024-0021
  • [23] Huba M., Filtered PIDA controller for the double integrator plus dead time, IFAC-PapersOnLine, 52 No. 27 (2019) 106-113. doi: 10.1016/j.ifacol.2019.12.741
  • [24] Huba M. and Vrančič D., Comparing filtered PI, PID and PIDD2 control for the FOTD plants, IFAC-PapersOnLine, 51 No. 4 (2018) 954-959. doi: 10.1016/j.ifacol.2018.06.099
  • [25] Heo J.P., Lim S., Im C.G., Ryu K.H., Sung S.W., New non-interactive form of the proportional-integral-derivative-acceleration (PIDA) controller and its explicit tuning rule, Korean Journal of Chemical Engineering, 40 (2023) 1277-1283. doi: 10.1007/s11814-022-1356-0
  • [26] Hu X., Hou G., Tan W., Tuning of PIDD2 controllers for oscillatory systems with time delays, Frontiers in Control Engineering, 3 (2023) 1-17. doi: 10.3389/fcteg.2022.1083419
  • [27] Hu X., Tan W., Hou G., Tuning of PID/PIDD2 controllers for second-order oscillatory systems with time delays, Electronics, 12 No. 14 (2023) 3168. doi: 10.3390/electronics12143168
  • [28] Li Z., Zhang H., Tan W., Comparison of PI/PID/PIDD2 controllers for higher order processes, IFAC-PapersOnLine, 58 No. 7 (2024) 340-345. doi: 10.1016/j.ifacol.2024.08.085
  • [29] Hu X., Tan W., Hou G., PIDD2 control of large wind turbines pitch angle, Energies, 16 No. 13 (2023) 1-22. doi: 10.3390/en16135096
  • [30] Kumar M. and Hote Y.V., Robust IMC-PIDA controller design for load frequency control of a time delayed power system, 2019 IEEE 58th Conference on Decision and Control (CDC), (2019) 8380-8385. doi: 10.1109/CDC40024.2019.9029259
  • [31] Kumar M. and Hote Y.V., Robust PIDD2 controller design for perturbed load frequency control of an interconnected time-delayed power systems, IEEE Transactions on Control Systems Technology, 29 No. 6 (2021) 2662-2669. doi: 10.1109/TCST.2020.3043447
  • [32] Anwar M.N., Siddiqui M.A., Laskar S.H., Yadav A., PIDA controller design for higher order stable process with inverse response characteristic, 2018 International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), (2018) 236-240. doi: 10.1109/CCTES.2018.8674158
  • [33] Huba M. and Vrancic D., Extending the model-based controller design to higher-order plant models and measurement noise, Symmetry, 13 No. 5 (2021) 1-44. doi: 10.3390/sym13050798
  • [34] Arulvadivu J., Manoharan S., Lal Raja Singh R., Giriprasad S., Optimal design of proportional integral derivative acceleration controller for higher‐order nonlinear time delay system using m‐MBOA technique, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35 No. 6 (2022) 1-24. doi: 10.1002/jnm.3016
  • [35] Visioli A. and Sánchez-Moreno J., IMC-based tuning of PIDA controllers: a comparison with PID control, IFAC-PapersOnLine, 58 No. 7 (2024) 1-6. doi: 10.1016/j.ifacol.2024.08.001
  • [36] Visioli A. and Sánchez-Moreno J., A relay-feedback automatic tuning methodology of PIDA controllers for high-order processes, International Journal of Control, 97 No. 1 (2024) 51-58. doi: 10.1080/00207179.2022.2135019
  • [37] Visioli A. and Sanchez-Moreno J., Design of PIDA controllers for high-order integral processes, 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), (2023) 1-8. doi: 10.1109/ETFA54631.2023.10275379
  • [38] Kumar M. and Hote Y.V., PIDD2 Controller design based on internal model control approach for a non-ideal DC-DC boost converter, 2021 IEEE Texas Power and Energy Conference (TPEC), (2021) 1-6. doi: 10.1109/TPEC51183.2021.9384954
  • [39] Kumar M. and Hote Y.V. Real-time performance analysis of PIDD2 controller for nonlinear twin rotor TITO aerodynamical system, Journal of Intelligent & Robotic Systems, 101 No. 55 (2021) 1-16. doi: 10.1007/s10846-021-01322-4
  • [40] Kumar M., Mahadeva R., Patole S.P., Non-fragile PIDA controller design for time-delayed uncertain system, IEEE Access, 12 (2024) 81156-81169. doi: 10.1109/ACCESS.2024.3411146
  • [41] Zandavi S.M., Chung V., Anaissi A., Accelerated control using stochastic dual simplex algorithm and genetic filter for drone application, IEEE Transactions on Aerospace and Electronic Systems, 58 No. 3 (2022) 2180-2191. doi: 10.1109/TAES.2021.3134751
  • [42] Saikia L.C. and Sinha, N., Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller, International Journal of Electrical Power & Energy Systems, 80 (2016) 52-63. doi: 10.1016/j.ijepes.2016.01.037
  • [43] Kumar M., Altaf A., Biswas, D., Cheetah optimizer based PIDA controller design for cyber-physical power system under cyberattacks and uncertainty, 2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC), (2023) 1-5. doi: 10.1109/STPEC59253.2023.10431040
  • [44] Kumar M., Resilient PIDA control design based frequency regulation of interconnected time-delayed microgrid under cyber-attacks, IEEE Transactions on Industry Applications, 59 No. 1 (2023) 492-502. doi: 10.1109/TIA.2022.3205280
  • [45] Huba M., Vrancic D., Bistak P., PID control with higher order derivative degrees for IPDT plant models, IEEE Access, 9 (2021) 2478-2495. doi: 10.1109/ACCESS.2020.3047351
  • [46] Bistak P., Huba M., Vrancic D., Chamraz S., IPDT Model-Based Ziegler–Nichols Tuning Generalized to Controllers with Higher-Order Derivatives, Sensors, 23 No. 8 (2023) 3787. doi: 10.3390/s23083787
  • [47] Huba M., Vrancic D., Bistak P., Series PID control with higher-order derivatives for processes approximated by IPDT models, IEEE Transactions on Automation Science and Engineering, 21 No. 3 (2024) 4406-4418. doi: 10.1109/TASE.2023.3296201
  • [48] Huba M., Bistak P., Brieznik J., Vrancic D., Constrained series PI, PID and PIDA controller design Inspired by Ziegler-Nichols, Power Electronics and Drives, 9 No. 1 (2024) 331-346. doi: 10.2478/pead-2024-0021
  • [49] Vrančić D. and Huba M., High-order filtered PID controller tuning based on magnitude optimum, Mathematics, 9 No. 12 (2021) 1-24. soi: 10.3390/math9121340
  • [50] Bisták P., Disturbance analysis virtual laboratory for PID controllers with higher derivative degrees, 2018 16th International Conference on Emerging eLearning Technologies and Applications (ICETA), (2018) 69-74. doi: 10.1109/ICETA.2018.8572065
  • [51] Bisták P. and Huba M., Analysis of higher derivative degree PID controllers via virtual laboratory, 2019 27th Mediterranean Conference on Control and Automation (MED), (2019) 356-361. doi: 10.1109/MED.2019.8798527
  • [52] Bisták P. and Huba M., Interactive software tool for design of higher derivative degree PID controllers, IFAC-PapersOnLine, 53 No. 20 (2020) 17198-17203. doi: 10.1016/j.ifacol.2020.12.1736
  • [53] Ferrari M. and Visioli A., A software tool to understand the design of PIDA controllers, IFAC-PapersOnLine, 55 No. 17 (2022) 249-254. doi: 10.1016/j.ifacol.2022.09.287
  • [54] Žáková K., Matišák J., Šefčík J., Contribution to PID and PIDA interactive educational tools, IFAC-PapersOnLine, 58 No. 7 (2024) 115-119. doi: 10.1016/j.ifacol.2024.08.020
  • [55] Numsomran A., Sriratana W., Julsereewong P., Kongratana V., Tirasesth K., I-PDA controller designed by CDM, Proceedings of the 14th KACC, (1999) 284-287.
  • [56] The MathWorks Inc. (2022). MATLAB, App Designer.
  • [57] Bingül Z. and Karahan O., A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system, Journal of the Franklin Institute, 355 No. 13 (2018) 5534-5559. doi: 10.1016/j.jfranklin.2018.05.056
  • [58] İzci D., Ekinci S., Mirjalili S., Optimal PID plus second-order derivative controller design for AVR system using a modified Runge Kutta optimizer and Bode’s ideal reference model, International Journal of Dynamics and Control, 11 No. 3 (2023) 1247-1264. doi: 10.1007/s40435-022-01046-9
There are 58 citations in total.

Details

Primary Language English
Subjects Control Theoryand Applications, Control Engineering, Simulation, Modelling, and Programming of Mechatronics Systems
Journal Section Tasarım ve Teknoloji
Authors

Metin Hatun 0000-0003-0279-5508

Fahri Vatansever 0000-0002-3885-8622

Early Pub Date May 26, 2025
Publication Date June 30, 2025
Submission Date December 27, 2024
Acceptance Date March 23, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Hatun, M., & Vatansever, F. (2025). The PIDA Controller Analysis Simulator. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 526-537. https://doi.org/10.29109/gujsc.1608341

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526