Termoplastik ve CFRP Yapıların Birleştirilmesinde Yapıştırıcı Cinsi ve Yüzey Hazırlığının Malzemenin Mekanik Dayanımı Üzerindeki Etkileri
Year 2025,
Volume: 13 Issue: 2, 538 - 552, 30.06.2025
Emin Öztürk
,
Mert Kılınçel
,
Gülden Kabakçı
,
Ahmet Kömürcü
Abstract
Kompozit malzemeler, hafiflik, dayanıklılık ve esneklikleriyle birçok endüstride tercih edilmektedir. Havacılık, otomotiv ve uzay endüstrilerinde yaygın olan karbon fiber takviyeli kompozitler, yüksek dayanım ve düşük ağırlıklarıyla dikkat çekmektedir. Yüksek basınçlı hidrojen depolama tanklarının üretiminde de sıklıkla kullanılan bu malzemeler, termoplastik ve termoset yapıların birleşim bölgelerindeki dayanımlarıyla önem kazanmaktadır. Bu çalışmada, karbon fiber epoksi kompozitlerin HDPE malzemelerle birleştirilmesinde yapıştırıcı türü ve yüzey hazırlığının mekanik dayanım üzerindeki etkileri araştırılmıştır. ASTM D5868 standardına uygun çekme testleri yapılmış, SEM analizleriyle hasar mekanizmaları incelenmiştir. Sonuçlar, DP190 yapıştırıcısının 120’lik zımpara ile, DP460’ın 180’lik zımpara ile optimum performans gösterdiğini, epoksinin ise yüksek dayanım gerektiren uygulamalarda öne çıktığını göstermiştir. Bu bulgular, Tip-IV hidrojen tanklarının güvenliğini artırmak ve endüstriyel uygulamalarda daha etkin birleştirme yöntemleri geliştirmek adına önemli bir katkı sunmaktadır.
Ethical Statement
Gerekli değil
Supporting Institution
Düzce Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Project Number
2024.06.05.1466
Thanks
Düzce Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
References
- [1]Fava RA. Polymers (1980). Part C, Physical Properties Methods of Experimental Physics ; V. 16. 1,554
- [2] Nielsen LE. Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry. 1967; 1(5):929–42.
- [3] Cussler EL, Hughes SE, Ward WJ, Aris R. Barrier membranes. J Memb Sci. 1988; 38(2):161–74.
- [4] Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films. 2011; 519(22):7766–71.
- [5] Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ. Barrier properties of model epoxy nanocomposites. J Memb Sci. 2008; 318(1–2):129–36.
- [6] Drozdov AD, Christiansen J de C. Micromechanical modeling of barrier properties of polymer nanocomposites. Compos Sci Technol. 2020; 189.
- [7] Huang HD, Ren PG, Xu JZ, Xu L, Zhong GJ, Hsiao BS, et al. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J Memb Sci. 2014; 464:110–8.
- [8] Minelli M, Baschetti MG, Doghieri F. Analysis of modeling results for barrier properties in ordered nanocomposite systems. J Memb Sci. 2009; 327(1–2):208–15.
- [9] Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Memb Sci. 2012; 409–410:156–63.
- [10] Govindaraj P, Sokolova A, Salim N, Juodkazis S, Fuss FK, Fox B, et al. Distribution states of graphene in polymer nanocomposites: A review. 2021: Vol. 226, Composites Part B: Engineering.
- [11] Carrera MC, Erdmann E, Destéfanis HA. Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with polyvinylalcohol. Journal of Chemistry.Vol. 2013; 1-7.
- [12] Rueda F, Marquez A, Otegui JL, Frontini PM. Buckling collapse of HDPE liners: Experimental set-up and FEM simulations. Thin-Walled Structures. 2016; 109:103–12.
- [13] Li X, Tabil LG, Oguocha IN, Panigrahi S. Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-HDPE biocomposites at processing temperatures. Compos Sci Technol. 2008; 68(7–8):1753–8.
- [14] Luo S, Fu J, Zhou Y, Yi C. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy. 2017;101:1030–6.
- [15] Warner M, Jeng T, Ayar S, Sekhar S, Marin D, Engler A, et al. Reduced graphene oxide catalytically enhances the rate of cyanate ester curing under variable frequency microwave heating. J Appl Polym Sci. 2023;140(21).
- [16] Warner M, Jeng T, Ayar S, Sekhar S, Marin D, Engler A, et al. Reduced graphene oxide catalytically enhances the rate of cyanate ester curing under variable frequency microwave heating. J Appl Polym Sci. 2023;140(21).
- [17] Ma Q, Rejab MRM, Azeem M, Hassan SA, Yang B, Kumar AP. Opportunities and challenges on composite pressure vessels (CPVs) from advanced filament winding machinery: A short communication. Int J Hydrogen Energy. 2024; 57:1364–72.
- [18] Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. Int J Hydrogen Energy. 2021;46(46):23779–94.
- [19] Air A, Oromiehie E, Prusty BG. Design and manufacture of a Type V composite pressure vessel using automated fibre placement. Compos B Eng. 2023;266.
- [20] Wang X, Tian M, Chen X, Xie P, Yang J, Chen J, et al. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel. Vol. 47, International Journal of Hydrogen Energy. Elsevier Ltd; 2022. p. 8382–408.
- [21] Sharma P, Burolia AK, Adak NC, Daiya J, Sardar HH, Neogi S. Effect of tension on liner buckling and performance of a type-4 cylinder for storage of compressed gases with experimental validation. Thin-Walled Structures. 2023;189.
- [22] Fang Q, Ji D. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type Ⅳ hydrogen storage vessels. Mater Today Commun. 2023;35.
- [23] Condé-Wolter J, Ruf MG, Liebsch A, Lebelt T, Koch I, Drechsler K, et al. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Compos Part A Appl Sci Manuf. 2023;167.
- [24] Condé-Wolter J, Ruf MG, Liebsch A, Lebelt T, Koch I, Drechsler K, et al. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Compos Part A Appl Sci Manuf. 2023;167.
- [25] Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. Int J Hydrogen Energy. 2021;46(46):23779–94.
- [26] Sun Y, Lv H, Zhou W, Zhang C. Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydrogen storage tank. Int J Hydrogen Energy. 2020;45(46):24980–90.
- [27] Barthélémy H. Hydrogen storage - Industrial prospectives. Int J Hydrogen Energy. 2012;37(22):17364–72.
- [28] Rueda F, Torres JP, Machado M, Frontini PM, Otegui JL. External pressure induced buckling collapse of high density polyethylene (HDPE) liners: FEM modeling and predictions. Thin-Walled Structures. 2015;96:56–63.
- [29] Rueda F, Otegui JL, Frontini P. Numerical tool to model collapse of polymeric liners in pipelines. Eng Fail Anal. 2012;20:25–34.
- [30] Bo K, Feng H, Jiang Y, Deng G, Wang D, Zhang Y. Study of blister phenomena on polymer liner of type IV hydrogen storage cylinders. Int J Hydrogen Energy. 2024;54:922–36.
- [31] Huang HD, Ren PG, Xu JZ, Xu L, Zhong GJ, Hsiao BS, et al. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J Memb Sci. 2014;464:110–8.
- [32] Bo K, Feng H, Jiang Y, Deng G, Wang D, Zhang Y. Study of blister phenomena on polymer liner of type IV hydrogen storage cylinders. Int J Hydrogen Energy. 2024;54:922–36.
- [33] Blanc-Vannet P, Papin P, Weber M, Renault P, Pepin J, Lainé E, et al. Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels. Int J Hydrogen Energy. 2019;8682–91.
- [34] Mariscal G, Depcik C, Chao H, Wu G, Li X. Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles. Energy Convers Manag. 2024;301.
- [35] Liu M, Lin K, Zhou M, Wallwork A, Bissett MA, Young RJ, et al. Mechanism of gas barrier improvement of graphene/polypropylene nanocomposites for new-generation light-weight hydrogen storage. Compos Sci Technol [Internet]. 2024;110483.Availablefrom:https://linkinghub.elsevier.com/retrieve/pii/S0266353824000538
- [36] Su Y, Lv H, Feng C, Zhang C. Hydrogen permeability of polyamide 6 as the liner material of Type Ⅳ hydrogen storage tanks: A molecular dynamics investigation. Int J Hydrogen Energy. 2024;50:1598–606.
- [37] Sapre S, Pareek K, Vyas M. Investigation of structural stability of type IV compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage. 2020;2(4).
- [38] Liu G, Zhang X, Yang Z, Wang L, Yang F, Wang R. Effects of interfaces and ordered microstructures on thermal properties of graphene flakes/polyethylene composites. Polym Compos. 2023;44(2):1371–80.
- [39] Blanco-Aguilera R, Martinez-Agirre M, Berasategi J, Penalba M, Bou-Ali MM, Shevtsova V. Effect of liner thermal properties and liner pre-cooling on the thermal management of fast-filling of hydrogen tanks. Int J Hydrogen Energy. 2024;52:1159–72.
- [40] Drozdov AD, Christiansen J de C. Micromechanical modeling of barrier properties of polymer nanocomposites. Compos Sci Technol. 2020;189.
- [41] Balasooriya W, Clute C, Schrittesser B, Pinter G. A Review on Applicability, Limitations, and Improvements of Polymeric Materials in High-Pressure Hydrogen Gas Atmospheres. Vol. 62, Polymer Reviews. Taylor and Francis Ltd.; 2022. p. 175–209.
- [42] K. Nemani et al., “Surface Modification: Surface Modification of Polymers: Methods and Applications (Adv. Mater. Interfaces 24/2018),” Adv. Mater. Interfaces, vol.5,2018, doi: 10.1002/admi.201870121.
- [43] E. M. Liston, M. L., and M. R. and Wertheimer, “Plasma surface modification of polymers for improved adhesion: a critical review,” J. Adhes. Sci. Technol., vol. 7, no. 10, pp. 1091–1127, 1993, doi: 10.1163/156856193X00600.
- [44] Pizzi, A., & Mittal, K.L. (Eds.). (2003). Handbook of Adhesive Technology, Revised and Expanded (2nd ed.). CRC Press. https://doi.org/10.1201/9780203912225
- [45] E. M. Petrie, Epoxy Adhesive Formulations. in McGraw Hill professional. McGraw Hill LLC, 2005; [Online]. Available: https://books.google.com.tr/books?id=738MPfO5FEkC
- [46] A. J. Kinloch, Adhesion and adhesives: science and technology. Springer Science & Business Media, 1987;
- [47] Yudhanto, Arief & Alfano, Marco & Lubineau, Gilles. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review. Composites Part A Applied Science and Manufacturing. 2021; 147. 106443. 10.1016/j.compositesa.2021.106443.
- [48] Nasiry Khanlar L, Revilla-León M, Barmak AB, Ikeda M, Alsandi Q, Tagami J, Zandinejad A. Surface roughness and shear bond strength to composite resin of additively manufactured interim restorative material with different printing orientations. J Prosthet Dent. 2023 May;129(5):788-795. doi: 10.1016/j.prosdent.2021.08.010. Epub 2021 Oct 1. PMID: 34602276.
- [49] Budhe, S., Ghumatkar, A., Birajdar, N. et al. Effect of surface roughness using different adherend materials on the adhesive bond strength. Appl Adhes Sci 3, 20 2015; https://doi.org/10.1186/s40563-015-0050-4.
- [50] S. Saha, D. Kocaefe, Y. Boluk, V. Mshvildadze, J. Legault, and A. Pichette, “Boreal forest conifer extracts: potential natural additives for acrylic polyurethane coatings for the protection of heat-treated jack pine,” J. Coatings Technol. Res., vol. 10, no. 1, pp. 109–122, 2013, doi: 10.1007/s11998-012-9435-5.
- [51] M., Rawat, P., Sai, L., Behera, R. P., Singh, K. K., & Zhu, D. (2021). Shear performance of MWCNTs modified single-lap joints of glass/epoxy laminates . Journal of Adhesion Science and Technology, 36(22), 2418–2437. https://doi.org/10.1080/01694243.2021.2011825.
- [52] Kinloch, A.J. (1987) Adhesion and Adhesives: Science and Technology. Chapman and Hall, London. http://dx.doi.org/10.1007/978-94-015-7764-9
- [53] Naito, K., Hirakata, H., & Fuj, T. (1997). Effect of surface treatment for steel adherends on static and fatigue crack growth of epoxy adhesives. Composite Interfaces, 5(4), 345–361. https://doi.org/10.1163/156855498X00126..
- [54] Dadian, A., Rahnama, S., & Zolfaghari, A. (2020). Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin. Journal of Adhesion Science and Technology, 34(22), 2389–2404. https://doi.org/10.1080/01694243.2020.1763540
- [55] Kabakçı, G., Kılınçel, M. & Tezel, G.B. Nanofiller Effects on the Isothermal Curing Kinetics of Epoxy Resin. Theor Found Chem Eng 2023; 57,1490–1502. https://doi.org/10.1134/S004057952306009X.
- [56] R. Sahin, S. Akpinar. The effects of adherend thickness on the fatigue strength of adhesively bonded single-lap joints, International Journal of Adhesion and Adhesives, 107, 2021. https://doi.org/10.1016/j.ijadhadh.2021.102845.
- [57] Hernandez, D. A., Soufen, C. A., & Orlandi, M. O. (2017). Carbon fiber reinforced polymer and epoxy adhesive tensile test failure analysis using scanning electron microscopy. Materials Research, 20(4), 951-961.
- [58] L. Scott Chumbley, Larry D. Hanke, Scanning Electron Microscopy for Failure Analysis, Failure Analysis and Prevention, Vol 11, 2021 ed., ASM Handbook, Edited By Brett A. Miller, Roch J. Shipley, Ronald J. Parrington, Daniel P. Dennies, ASM International, 2021; p 240–250, https://doi.org/10.31399/asm.hb.v11.a0006769
- [59] Kobayashi, M., Ishikawa, T. and Takahara, A. (2013). Adhesion and Tribological Characteristics of Ion-Containing Polymer Brushes Prepared by Controlled Radical Polymerization. In Polymer Adhesion, Friction, and Lubrication, H. Zeng (Ed.). https://doi.org/10.1002/9781118505175.ch2
Effects of Adhesive Type and Surface Preparation on the Mechanical Strength of Thermoplastic and CFRP Structures
Year 2025,
Volume: 13 Issue: 2, 538 - 552, 30.06.2025
Emin Öztürk
,
Mert Kılınçel
,
Gülden Kabakçı
,
Ahmet Kömürcü
Abstract
Composite materials are widely used in industries for their lightweight, durability, and flexibility. Carbon fiber-reinforced composites are particularly demanded and used in aerospace, automotive, and space industries due to their high strength and low weight. They are also critical in manufacturing high-pressure hydrogen storage tanks, where the interfacial strength between thermoplastic and thermoset materials is crucial. This study investigates the effects of adhesive type and surface preparation on the mechanical strength of carbon fiber-reinforced composites bonded with HDPE. Tensile tests were performed according to ASTM D5868, and SEM analyses were conducted to evaluate damage mechanisms. The results show that DP190 adhesive achieves optimal performance with 120-grit sanding, DP460 performs best with 180-grit sanding, and epoxy is ideal for high-strength applications. These findings contribute to enhancing the safety of Type-IV hydrogen tanks and developing more reliable bonding methods for industrial applications.
Ethical Statement
Unnecessary
Supporting Institution
Düzce University Scientific Research Projects Coordination Office
Project Number
2024.06.05.1466
Thanks
Düzce University Scientific Research Projects Coordination Office
References
- [1]Fava RA. Polymers (1980). Part C, Physical Properties Methods of Experimental Physics ; V. 16. 1,554
- [2] Nielsen LE. Models for the Permeability of Filled Polymer Systems. Journal of Macromolecular Science: Part A - Chemistry. 1967; 1(5):929–42.
- [3] Cussler EL, Hughes SE, Ward WJ, Aris R. Barrier membranes. J Memb Sci. 1988; 38(2):161–74.
- [4] Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films. 2011; 519(22):7766–71.
- [5] Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ. Barrier properties of model epoxy nanocomposites. J Memb Sci. 2008; 318(1–2):129–36.
- [6] Drozdov AD, Christiansen J de C. Micromechanical modeling of barrier properties of polymer nanocomposites. Compos Sci Technol. 2020; 189.
- [7] Huang HD, Ren PG, Xu JZ, Xu L, Zhong GJ, Hsiao BS, et al. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J Memb Sci. 2014; 464:110–8.
- [8] Minelli M, Baschetti MG, Doghieri F. Analysis of modeling results for barrier properties in ordered nanocomposite systems. J Memb Sci. 2009; 327(1–2):208–15.
- [9] Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Memb Sci. 2012; 409–410:156–63.
- [10] Govindaraj P, Sokolova A, Salim N, Juodkazis S, Fuss FK, Fox B, et al. Distribution states of graphene in polymer nanocomposites: A review. 2021: Vol. 226, Composites Part B: Engineering.
- [11] Carrera MC, Erdmann E, Destéfanis HA. Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with polyvinylalcohol. Journal of Chemistry.Vol. 2013; 1-7.
- [12] Rueda F, Marquez A, Otegui JL, Frontini PM. Buckling collapse of HDPE liners: Experimental set-up and FEM simulations. Thin-Walled Structures. 2016; 109:103–12.
- [13] Li X, Tabil LG, Oguocha IN, Panigrahi S. Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-HDPE biocomposites at processing temperatures. Compos Sci Technol. 2008; 68(7–8):1753–8.
- [14] Luo S, Fu J, Zhou Y, Yi C. The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renew Energy. 2017;101:1030–6.
- [15] Warner M, Jeng T, Ayar S, Sekhar S, Marin D, Engler A, et al. Reduced graphene oxide catalytically enhances the rate of cyanate ester curing under variable frequency microwave heating. J Appl Polym Sci. 2023;140(21).
- [16] Warner M, Jeng T, Ayar S, Sekhar S, Marin D, Engler A, et al. Reduced graphene oxide catalytically enhances the rate of cyanate ester curing under variable frequency microwave heating. J Appl Polym Sci. 2023;140(21).
- [17] Ma Q, Rejab MRM, Azeem M, Hassan SA, Yang B, Kumar AP. Opportunities and challenges on composite pressure vessels (CPVs) from advanced filament winding machinery: A short communication. Int J Hydrogen Energy. 2024; 57:1364–72.
- [18] Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. Int J Hydrogen Energy. 2021;46(46):23779–94.
- [19] Air A, Oromiehie E, Prusty BG. Design and manufacture of a Type V composite pressure vessel using automated fibre placement. Compos B Eng. 2023;266.
- [20] Wang X, Tian M, Chen X, Xie P, Yang J, Chen J, et al. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel. Vol. 47, International Journal of Hydrogen Energy. Elsevier Ltd; 2022. p. 8382–408.
- [21] Sharma P, Burolia AK, Adak NC, Daiya J, Sardar HH, Neogi S. Effect of tension on liner buckling and performance of a type-4 cylinder for storage of compressed gases with experimental validation. Thin-Walled Structures. 2023;189.
- [22] Fang Q, Ji D. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type Ⅳ hydrogen storage vessels. Mater Today Commun. 2023;35.
- [23] Condé-Wolter J, Ruf MG, Liebsch A, Lebelt T, Koch I, Drechsler K, et al. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Compos Part A Appl Sci Manuf. 2023;167.
- [24] Condé-Wolter J, Ruf MG, Liebsch A, Lebelt T, Koch I, Drechsler K, et al. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Compos Part A Appl Sci Manuf. 2023;167.
- [25] Hu Z, Chen M, Pan B. Simulation and burst validation of 70 MPa type IV hydrogen storage vessel with dome reinforcement. Int J Hydrogen Energy. 2021;46(46):23779–94.
- [26] Sun Y, Lv H, Zhou W, Zhang C. Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydrogen storage tank. Int J Hydrogen Energy. 2020;45(46):24980–90.
- [27] Barthélémy H. Hydrogen storage - Industrial prospectives. Int J Hydrogen Energy. 2012;37(22):17364–72.
- [28] Rueda F, Torres JP, Machado M, Frontini PM, Otegui JL. External pressure induced buckling collapse of high density polyethylene (HDPE) liners: FEM modeling and predictions. Thin-Walled Structures. 2015;96:56–63.
- [29] Rueda F, Otegui JL, Frontini P. Numerical tool to model collapse of polymeric liners in pipelines. Eng Fail Anal. 2012;20:25–34.
- [30] Bo K, Feng H, Jiang Y, Deng G, Wang D, Zhang Y. Study of blister phenomena on polymer liner of type IV hydrogen storage cylinders. Int J Hydrogen Energy. 2024;54:922–36.
- [31] Huang HD, Ren PG, Xu JZ, Xu L, Zhong GJ, Hsiao BS, et al. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets. J Memb Sci. 2014;464:110–8.
- [32] Bo K, Feng H, Jiang Y, Deng G, Wang D, Zhang Y. Study of blister phenomena on polymer liner of type IV hydrogen storage cylinders. Int J Hydrogen Energy. 2024;54:922–36.
- [33] Blanc-Vannet P, Papin P, Weber M, Renault P, Pepin J, Lainé E, et al. Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels. Int J Hydrogen Energy. 2019;8682–91.
- [34] Mariscal G, Depcik C, Chao H, Wu G, Li X. Technical and economic feasibility of applying fuel cells as the power source of unmanned aerial vehicles. Energy Convers Manag. 2024;301.
- [35] Liu M, Lin K, Zhou M, Wallwork A, Bissett MA, Young RJ, et al. Mechanism of gas barrier improvement of graphene/polypropylene nanocomposites for new-generation light-weight hydrogen storage. Compos Sci Technol [Internet]. 2024;110483.Availablefrom:https://linkinghub.elsevier.com/retrieve/pii/S0266353824000538
- [36] Su Y, Lv H, Feng C, Zhang C. Hydrogen permeability of polyamide 6 as the liner material of Type Ⅳ hydrogen storage tanks: A molecular dynamics investigation. Int J Hydrogen Energy. 2024;50:1598–606.
- [37] Sapre S, Pareek K, Vyas M. Investigation of structural stability of type IV compressed hydrogen storage tank during refueling of fuel cell vehicle. Energy Storage. 2020;2(4).
- [38] Liu G, Zhang X, Yang Z, Wang L, Yang F, Wang R. Effects of interfaces and ordered microstructures on thermal properties of graphene flakes/polyethylene composites. Polym Compos. 2023;44(2):1371–80.
- [39] Blanco-Aguilera R, Martinez-Agirre M, Berasategi J, Penalba M, Bou-Ali MM, Shevtsova V. Effect of liner thermal properties and liner pre-cooling on the thermal management of fast-filling of hydrogen tanks. Int J Hydrogen Energy. 2024;52:1159–72.
- [40] Drozdov AD, Christiansen J de C. Micromechanical modeling of barrier properties of polymer nanocomposites. Compos Sci Technol. 2020;189.
- [41] Balasooriya W, Clute C, Schrittesser B, Pinter G. A Review on Applicability, Limitations, and Improvements of Polymeric Materials in High-Pressure Hydrogen Gas Atmospheres. Vol. 62, Polymer Reviews. Taylor and Francis Ltd.; 2022. p. 175–209.
- [42] K. Nemani et al., “Surface Modification: Surface Modification of Polymers: Methods and Applications (Adv. Mater. Interfaces 24/2018),” Adv. Mater. Interfaces, vol.5,2018, doi: 10.1002/admi.201870121.
- [43] E. M. Liston, M. L., and M. R. and Wertheimer, “Plasma surface modification of polymers for improved adhesion: a critical review,” J. Adhes. Sci. Technol., vol. 7, no. 10, pp. 1091–1127, 1993, doi: 10.1163/156856193X00600.
- [44] Pizzi, A., & Mittal, K.L. (Eds.). (2003). Handbook of Adhesive Technology, Revised and Expanded (2nd ed.). CRC Press. https://doi.org/10.1201/9780203912225
- [45] E. M. Petrie, Epoxy Adhesive Formulations. in McGraw Hill professional. McGraw Hill LLC, 2005; [Online]. Available: https://books.google.com.tr/books?id=738MPfO5FEkC
- [46] A. J. Kinloch, Adhesion and adhesives: science and technology. Springer Science & Business Media, 1987;
- [47] Yudhanto, Arief & Alfano, Marco & Lubineau, Gilles. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review. Composites Part A Applied Science and Manufacturing. 2021; 147. 106443. 10.1016/j.compositesa.2021.106443.
- [48] Nasiry Khanlar L, Revilla-León M, Barmak AB, Ikeda M, Alsandi Q, Tagami J, Zandinejad A. Surface roughness and shear bond strength to composite resin of additively manufactured interim restorative material with different printing orientations. J Prosthet Dent. 2023 May;129(5):788-795. doi: 10.1016/j.prosdent.2021.08.010. Epub 2021 Oct 1. PMID: 34602276.
- [49] Budhe, S., Ghumatkar, A., Birajdar, N. et al. Effect of surface roughness using different adherend materials on the adhesive bond strength. Appl Adhes Sci 3, 20 2015; https://doi.org/10.1186/s40563-015-0050-4.
- [50] S. Saha, D. Kocaefe, Y. Boluk, V. Mshvildadze, J. Legault, and A. Pichette, “Boreal forest conifer extracts: potential natural additives for acrylic polyurethane coatings for the protection of heat-treated jack pine,” J. Coatings Technol. Res., vol. 10, no. 1, pp. 109–122, 2013, doi: 10.1007/s11998-012-9435-5.
- [51] M., Rawat, P., Sai, L., Behera, R. P., Singh, K. K., & Zhu, D. (2021). Shear performance of MWCNTs modified single-lap joints of glass/epoxy laminates . Journal of Adhesion Science and Technology, 36(22), 2418–2437. https://doi.org/10.1080/01694243.2021.2011825.
- [52] Kinloch, A.J. (1987) Adhesion and Adhesives: Science and Technology. Chapman and Hall, London. http://dx.doi.org/10.1007/978-94-015-7764-9
- [53] Naito, K., Hirakata, H., & Fuj, T. (1997). Effect of surface treatment for steel adherends on static and fatigue crack growth of epoxy adhesives. Composite Interfaces, 5(4), 345–361. https://doi.org/10.1163/156855498X00126..
- [54] Dadian, A., Rahnama, S., & Zolfaghari, A. (2020). Experimental study of the CTBN effect on mechanical properties and mode I and II fracture toughness of a new epoxy resin. Journal of Adhesion Science and Technology, 34(22), 2389–2404. https://doi.org/10.1080/01694243.2020.1763540
- [55] Kabakçı, G., Kılınçel, M. & Tezel, G.B. Nanofiller Effects on the Isothermal Curing Kinetics of Epoxy Resin. Theor Found Chem Eng 2023; 57,1490–1502. https://doi.org/10.1134/S004057952306009X.
- [56] R. Sahin, S. Akpinar. The effects of adherend thickness on the fatigue strength of adhesively bonded single-lap joints, International Journal of Adhesion and Adhesives, 107, 2021. https://doi.org/10.1016/j.ijadhadh.2021.102845.
- [57] Hernandez, D. A., Soufen, C. A., & Orlandi, M. O. (2017). Carbon fiber reinforced polymer and epoxy adhesive tensile test failure analysis using scanning electron microscopy. Materials Research, 20(4), 951-961.
- [58] L. Scott Chumbley, Larry D. Hanke, Scanning Electron Microscopy for Failure Analysis, Failure Analysis and Prevention, Vol 11, 2021 ed., ASM Handbook, Edited By Brett A. Miller, Roch J. Shipley, Ronald J. Parrington, Daniel P. Dennies, ASM International, 2021; p 240–250, https://doi.org/10.31399/asm.hb.v11.a0006769
- [59] Kobayashi, M., Ishikawa, T. and Takahara, A. (2013). Adhesion and Tribological Characteristics of Ion-Containing Polymer Brushes Prepared by Controlled Radical Polymerization. In Polymer Adhesion, Friction, and Lubrication, H. Zeng (Ed.). https://doi.org/10.1002/9781118505175.ch2