Research Article
BibTex RIS Cite

Enhancement of Microstructure Evolution and Tribological Properties of Al6063 Alloy Through Grain Refinement via ECAP Technique

Year 2025, Volume: 13 Issue: 2, 471 - 487, 30.06.2025
https://doi.org/10.29109/gujsc.1661391

Abstract

Present study aimed to increase the applicability of the material in the aviation, aerospace, and automotive industries by improving the microstructural and tribological properties of Al6063 alloy using the ECAP technique at room temperature with different passes (2, 4 and 8) and by selecting the BC route. XRD, SEM, EDS/Mapping, 3D Profilometer, TEM and TEM/MapViewer methods were performed on all samples in the microstructural characterization processes. Microhardness and dry sliding wear tests were conducted to evaluate the mechanical and tribological properties. It was determined that with the number of passes being 8, the hardness of the equiaxed sub-micron/nano grains increased to 119HV and had the best tribological properties (CoF: 0.398 and Ra: 0.620).

Supporting Institution

Gazi Üniversitesi

Project Number

FKB-2023-8648.

Thanks

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi bu çalışmaya FKB-2023-8648 Proje Numarası altında maddi destek sağlamıştır.

References

  • [1] Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci [ Internet]. 2006;51(7):881–981.
  • [2] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci [ Internet]. 2006;51(4):427–556.
  • [3] Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci [ Internet]. 2008;53(6):893–979.
  • [4] Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM [ Internet]. 2006;58(4):33–39.
  • [5] Iwahashi Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater [ Internet]. 1996;35(2):143–146.
  • [6] Jeon JH, Jeon JG, Joo MR, et al. Deformation behavior of an A356 alloy containing small sub-grains with wide low-angle boundary. J Alloys Compd [ Internet]. 2022;908:164550.
  • [7] Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann - Manuf Technol. 2008; doi: 10.1016/j.cirp.2008.09.005.
  • [8] Yilmaz TA, Totik Y, Lule Senoz GM, et al. Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: Effect of route, temperature and number of passes. Mater Today Commun [ Internet]. 2022;33:104628.
  • [9] Furukawa M, Horita Z, Nemoto M, et al. Review: Processing of metals by equal-channel angular pressing. J Mater Sci [ Internet]. 2001;36(12):2835–2843.
  • [10] Snopiński P, Hilšer O. Mechanism of Grain Refinement in 3D-Printed AlSi10Mg Alloy Subjected to Severe Plastic Deformation. Materials (Basel). 2024.
  • [11] Huang S-J, Wu S-Y, Subramani M. Effect of Zinc and Severe Plastic Deformation on Mechanical Properties of AZ61 Magnesium Alloy. Materials (Basel). 2024.
  • [12] Tolcha MA, Gebrehiwot TM, Lemu HG. Enhancing Mechanical Properties of Cast Ingot Al6061 Alloy Using ECAP Process. J Mater Eng Perform [ Internet]. 2024; doi: 10.1007/s11665-024-09978-3.
  • [13] Chen Y, Liu Y, Zhang J, et al. Deformation-mediated cyclic evolution of precipitates in Al-Mg-Si-Cu alloy by multi-pass ECAP and thermal treatments. J Mater Sci Technol [ Internet]. 2025;213:42–54.
  • [14] Ghosh A, Ghosh M, Gudimetla K, et al. Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties. Arch Civ Mech Eng [ Internet]. 2020;20(1):7.
  • [15] Soliman MS, El-Danaf EA, Almajid AA. Effect of Equal-Channel Angular Pressing Process on Properties of 1050 Al Alloy. Mater Manuf Process [ Internet]. 2012;27(7):746–750.
  • [16] Baig M, Rehman AU, Mohammed JA, et al. Effect of Microstructure and Mechanical Properties of Al5083 Alloy Processed by ECAP at Room Temperature and High Temperature. Crystals. 2021.
  • [17] Elibol C, Sagir K, Dogan M. Effect of equal-channel angular pressing on microstructure, aging kinetics and impact behavior in a 7075 aluminum alloy. Mater Today Commun [ Internet]. 2024;39:108931.
  • [18] Korchef A, Souid I. Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing. Crystals. 2023.
  • [19] Sitdikov O, Avtokratova E, Markushev M, et al. Structural Characterization of Binary Al-Cu Alloy Processed by Equal Channel Angular Pressing at Half of the Melting Point. Metall Mater Trans A [ Internet]. 2023;54(2):505–525.
  • [20] Khelfa T, Rekik MA, Muñoz-Bolaños JA, et al. Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP). Int J Adv Manuf Technol [ Internet]. 2018;95(1):1165–1177.
  • [21] Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog Mater Sci [ Internet]. 2009;54(4):427–510.
  • [22] Valiev RZ, Zehetbauer MJ, Estrin Y, et al. The Innovation Potential of Bulk Nanostructured Materials. Adv Eng Mater [ Internet]. 2007;9(7):527–533.
  • [23] Furukawa M, Iwahashi Y, Horita Z, et al. The shearing characteristics associated with equal-channel angular pressing. Mater Sci Eng A [ Internet]. 1998;257(2):328–332.
  • [24] Kadiyan S, Sharma S, Aggarwal A, et al. Investigating the Influence of Thermomechanical Equal Channel Angular Pressing (ECAP) Improved Die on AA-6061. J Mater Eng Perform [ Internet]. 2024; doi: 10.1007/s11665-024-10127-z.
  • [25] Judas J, Zapletal J, Adam O, et al. Microstructural stability and precipitate evolution of thermally treated 7075 aluminum alloy fabricated by cold spray. Mater Charact [ Internet]. 2024;216:114259.
  • [26] Afifi MA, Hamdy M, Brechtl J, et al. Enhancing mechanical properties of Al-Zn-Mg-Cu alloys: The impact of high strain rate compression and subsequent heat treatment on microstructural evolution. Mater Today Commun [ Internet]. 2024;40:110131.
  • [27] Zhang Z, Hosoda S, Kim I-S, et al. Grain refining performance for Al and Al–Si alloy casts by addition of equal-channel angular pressed Al–5mass% Ti alloy. Mater Sci Eng A [ Internet]. 2006;425(1):55–63.
  • [28] Wang CT, Gao N, Wood RJK, et al. Wear behavior of an aluminum alloy processed by equal-channel angular pressing. J Mater Sci [ Internet]. 2011;46(1):123–130.
  • [29] Aydın M, Heyal Y. Effect of equal channel angular pressing on microstructural and mechanical properties of as cast Al–20 wt-Zn alloy. Mater Sci Technol [ Internet]. 2013;29(6):679–688.
  • [30] Ortiz-Cuellar E, Hernandez-Rodriguez MAL, García-Sanchez E. Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformation. Wear [ Internet]. 2011;271(9):1828–1832.
  • [31] Gao N, Wang CT, Wood RJK, et al. Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J Mater Sci [ Internet]. 2012;47(12):4779–4797.
  • [32] Panigrahi SK, Jayaganthan R. A study on the mechanical properties of cryorolled Al–Mg–Si alloy. Mater Sci Eng A [ Internet]. 2008;480(1):299–305.
  • [33] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci [ Internet]. 2014;60:130–207.
  • [34] Sherby OD, Klundt RH, Miller AK. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall Trans A [ Internet]. 1977;8(6):843–850.
  • [35] Xu J, Li J, Zhu X, et al. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment. Materials (Basel). 2015. p. 7447–7460.
  • [36] Lule Senoz GM, Yilmaz TA. Optimization of Equal Channel Angular Pressing Parameters for Improving the Hardness and Microstructure Properties of Al–Zn–Mg Alloy by Using Taguchi Method. Met Mater Int [ Internet]. 2021;27(3):436–448.
  • [37] Reihanian M, Ebrahimi R, Moshksar MM, et al. Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP). Mater Charact [ Internet]. 2008;59(9):1312–1323.
  • [38] Hosseinzadeh A, Radi A, Richter J, et al. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J Manuf Process [ Internet]. 2021;68:788–795.
  • [39] Xu J, Li J, Shan D, et al. Microstructural evolution and micro/meso-deformation behavior in pure copper processed by equal-channel angular pressing. Mater Sci Eng A [ Internet]. 2016;664:114–125.
  • [40] Shaeri MH, Shaeri M, Ebrahimi M, et al. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog Nat Sci Mater Int [ Internet]. 2016;26(2):182–191.
  • [41] Zhao H, Pan Q, Qin Q, et al. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Mater Sci Eng A [ Internet]. 2019;751:70–79.
  • [42] Rao PN, Singh D, Jayaganthan R. Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Mater Des [ Internet]. 2014;56:97–104.
  • [43] Raju KS, Krishna MG, Padmanabhan KA, et al. Grain size and grain boundary character distribution in ultra-fine grained (ECAP) nickel. Mater Sci Eng A [ Internet]. 2008;491(1):1–7.
  • [44] Najafi S, Eivani AR, Samaee M, et al. A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater Charact [ Internet]. 2018;136:60–68.
  • [45] Dyakonov GS, Yakovleva T V, Mironov SY, et al. Microstructure of the Advanced Titanium Alloy VT8M-1 Subjected to Rotary Swaging. Materials (Basel). 2023.
  • [46] Semiatin SL, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater Sci Eng A [ Internet]. 1999;263(2):257–271.
  • [47] Horita Z, Fujinami T, Nemoto M, et al. Improvement of mechanical properties for Al alloys using equal-channel angular pressing. J Mater Process Technol [ Internet]. 2001;117(3):288–292.
  • [48] Liu M, Chen J, Lin Y, et al. Microstructure, mechanical properties and wear resistance of an Al–Mg–Si alloy produced by equal channel angular pressing. Prog Nat Sci Mater Int [ Internet]. 2020;30(4):485–493.
  • [49] Lyashenko IA, Pham TH, Popov VL. Controlling the Friction Coefficient and Adhesive Properties of a Contact by Varying the Indenter Geometry. Processes. 2024.
  • [50] Chang Y-P, Liu C-T, Chu L-M, et al. Wear mechanisms of aluminum 5083/6061/7075 with and without T6 treatment. Adv Mech Eng [ Internet]. 2023;15(11):16878132231201000.
  • [51] Manjunath GK, Udaya Bhat K, Preetham Kumar G V, et al. Microstructure and Wear Performance of ECAP Processed Cast Al–Zn–Mg Alloys. Trans Indian Inst Met [ Internet]. 2018;71(8):1919–1931.
  • [52] Filippov A V, Tarasov SY, Filippova EO. The Effect of Ultrafine-Grained (UFG) Structure Formed by Equal-Channel Angular Pressing in AA7075 on Wear and Friction in Sliding against Steel and Ceramic Counterbodies. Metals (Basel). 2024.
  • [53] K R G, H SN. Impact of ECAP on wear performance of Al–Mn magnesium alloy. Mater Res Express [ Internet]. 2020;7(1):16550.
  • [54] Divya SP, Nagaraj M, Kesavamoorthy M, et al. Investigation on the Effect of ECAP Routes on the Wear Behavior of AA2014. Trans Indian Inst Met [ Internet]. 2018;71(1):67–77.
  • [55] Kaya H. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys. 2018;60(9):885–891.
  • [56] Tasci U, Yilmaz TA, Bostan B. Investigation of microstructure, wear and transverse rupture strength of WE43/nano B4C composites produced by powder metallurgy method. Tribol Int [ Internet]. 2023;180:108231.
  • [57] Taşcı U, Yılmaz TA, Karakoç H, et al. Enhancing Wear Resistance and Mechanical Behaviors of AA7020 Alloys Using Hybrid Fe3O4-GNP Reinforcement. Lubricants. 2024.

ECAP Tekniği ile Tane İnceltme Yoluyla Al6063 Alaşımının Mikro Yapı Evriminin ve Tribolojik Özelliklerinin Geliştirilmesi

Year 2025, Volume: 13 Issue: 2, 471 - 487, 30.06.2025
https://doi.org/10.29109/gujsc.1661391

Abstract

Mevcut çalışmada, Al6063 alaşımının mikro yapısal ve tribolojik özelliklerini oda sıcaklığında farklı geçişlerle (2, 4 ve 8) ve BC rotası seçilerek ECAP tekniği kullanılarak iyileştirerek malzemenin havacılık, uzay ve otomotiv endüstrilerinde uygulanabilirliğini artırmak amaçlanmıştır. Mikro yapısal karakterizasyon işlemlerinde tüm numunelere XRD, SEM, EDS/Mapping, 3D Profilometer, TEM ve TEM/MapViewer yöntemleri uygulanmıştır. Mekanik ve tribolojik özellikleri değerlendirmek için mikro sertlik ve kuru kayma aşınma testleri yapılmıştır. Geçiş sayısının 8 olmasıyla eş eksenli alt mikron/nano tanelerin sertliğinin 119HV'ye çıktığı ve en iyi tribolojik özelliklere sahip olduğu (CoF: 0,398 ve Ra: 0,620) belirlenmiştir.

Project Number

FKB-2023-8648.

References

  • [1] Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci [ Internet]. 2006;51(7):881–981.
  • [2] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci [ Internet]. 2006;51(4):427–556.
  • [3] Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci [ Internet]. 2008;53(6):893–979.
  • [4] Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM [ Internet]. 2006;58(4):33–39.
  • [5] Iwahashi Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater [ Internet]. 1996;35(2):143–146.
  • [6] Jeon JH, Jeon JG, Joo MR, et al. Deformation behavior of an A356 alloy containing small sub-grains with wide low-angle boundary. J Alloys Compd [ Internet]. 2022;908:164550.
  • [7] Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann - Manuf Technol. 2008; doi: 10.1016/j.cirp.2008.09.005.
  • [8] Yilmaz TA, Totik Y, Lule Senoz GM, et al. Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: Effect of route, temperature and number of passes. Mater Today Commun [ Internet]. 2022;33:104628.
  • [9] Furukawa M, Horita Z, Nemoto M, et al. Review: Processing of metals by equal-channel angular pressing. J Mater Sci [ Internet]. 2001;36(12):2835–2843.
  • [10] Snopiński P, Hilšer O. Mechanism of Grain Refinement in 3D-Printed AlSi10Mg Alloy Subjected to Severe Plastic Deformation. Materials (Basel). 2024.
  • [11] Huang S-J, Wu S-Y, Subramani M. Effect of Zinc and Severe Plastic Deformation on Mechanical Properties of AZ61 Magnesium Alloy. Materials (Basel). 2024.
  • [12] Tolcha MA, Gebrehiwot TM, Lemu HG. Enhancing Mechanical Properties of Cast Ingot Al6061 Alloy Using ECAP Process. J Mater Eng Perform [ Internet]. 2024; doi: 10.1007/s11665-024-09978-3.
  • [13] Chen Y, Liu Y, Zhang J, et al. Deformation-mediated cyclic evolution of precipitates in Al-Mg-Si-Cu alloy by multi-pass ECAP and thermal treatments. J Mater Sci Technol [ Internet]. 2025;213:42–54.
  • [14] Ghosh A, Ghosh M, Gudimetla K, et al. Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties. Arch Civ Mech Eng [ Internet]. 2020;20(1):7.
  • [15] Soliman MS, El-Danaf EA, Almajid AA. Effect of Equal-Channel Angular Pressing Process on Properties of 1050 Al Alloy. Mater Manuf Process [ Internet]. 2012;27(7):746–750.
  • [16] Baig M, Rehman AU, Mohammed JA, et al. Effect of Microstructure and Mechanical Properties of Al5083 Alloy Processed by ECAP at Room Temperature and High Temperature. Crystals. 2021.
  • [17] Elibol C, Sagir K, Dogan M. Effect of equal-channel angular pressing on microstructure, aging kinetics and impact behavior in a 7075 aluminum alloy. Mater Today Commun [ Internet]. 2024;39:108931.
  • [18] Korchef A, Souid I. Grain Refinement and Strengthening of an Aluminum Alloy Subjected to Severe Plastic Deformation through Equal-Channel Angular Pressing. Crystals. 2023.
  • [19] Sitdikov O, Avtokratova E, Markushev M, et al. Structural Characterization of Binary Al-Cu Alloy Processed by Equal Channel Angular Pressing at Half of the Melting Point. Metall Mater Trans A [ Internet]. 2023;54(2):505–525.
  • [20] Khelfa T, Rekik MA, Muñoz-Bolaños JA, et al. Microstructure and strengthening mechanisms in an Al-Mg-Si alloy processed by equal channel angular pressing (ECAP). Int J Adv Manuf Technol [ Internet]. 2018;95(1):1165–1177.
  • [21] Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Prog Mater Sci [ Internet]. 2009;54(4):427–510.
  • [22] Valiev RZ, Zehetbauer MJ, Estrin Y, et al. The Innovation Potential of Bulk Nanostructured Materials. Adv Eng Mater [ Internet]. 2007;9(7):527–533.
  • [23] Furukawa M, Iwahashi Y, Horita Z, et al. The shearing characteristics associated with equal-channel angular pressing. Mater Sci Eng A [ Internet]. 1998;257(2):328–332.
  • [24] Kadiyan S, Sharma S, Aggarwal A, et al. Investigating the Influence of Thermomechanical Equal Channel Angular Pressing (ECAP) Improved Die on AA-6061. J Mater Eng Perform [ Internet]. 2024; doi: 10.1007/s11665-024-10127-z.
  • [25] Judas J, Zapletal J, Adam O, et al. Microstructural stability and precipitate evolution of thermally treated 7075 aluminum alloy fabricated by cold spray. Mater Charact [ Internet]. 2024;216:114259.
  • [26] Afifi MA, Hamdy M, Brechtl J, et al. Enhancing mechanical properties of Al-Zn-Mg-Cu alloys: The impact of high strain rate compression and subsequent heat treatment on microstructural evolution. Mater Today Commun [ Internet]. 2024;40:110131.
  • [27] Zhang Z, Hosoda S, Kim I-S, et al. Grain refining performance for Al and Al–Si alloy casts by addition of equal-channel angular pressed Al–5mass% Ti alloy. Mater Sci Eng A [ Internet]. 2006;425(1):55–63.
  • [28] Wang CT, Gao N, Wood RJK, et al. Wear behavior of an aluminum alloy processed by equal-channel angular pressing. J Mater Sci [ Internet]. 2011;46(1):123–130.
  • [29] Aydın M, Heyal Y. Effect of equal channel angular pressing on microstructural and mechanical properties of as cast Al–20 wt-Zn alloy. Mater Sci Technol [ Internet]. 2013;29(6):679–688.
  • [30] Ortiz-Cuellar E, Hernandez-Rodriguez MAL, García-Sanchez E. Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformation. Wear [ Internet]. 2011;271(9):1828–1832.
  • [31] Gao N, Wang CT, Wood RJK, et al. Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J Mater Sci [ Internet]. 2012;47(12):4779–4797.
  • [32] Panigrahi SK, Jayaganthan R. A study on the mechanical properties of cryorolled Al–Mg–Si alloy. Mater Sci Eng A [ Internet]. 2008;480(1):299–305.
  • [33] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci [ Internet]. 2014;60:130–207.
  • [34] Sherby OD, Klundt RH, Miller AK. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall Trans A [ Internet]. 1977;8(6):843–850.
  • [35] Xu J, Li J, Zhu X, et al. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment. Materials (Basel). 2015. p. 7447–7460.
  • [36] Lule Senoz GM, Yilmaz TA. Optimization of Equal Channel Angular Pressing Parameters for Improving the Hardness and Microstructure Properties of Al–Zn–Mg Alloy by Using Taguchi Method. Met Mater Int [ Internet]. 2021;27(3):436–448.
  • [37] Reihanian M, Ebrahimi R, Moshksar MM, et al. Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP). Mater Charact [ Internet]. 2008;59(9):1312–1323.
  • [38] Hosseinzadeh A, Radi A, Richter J, et al. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys. J Manuf Process [ Internet]. 2021;68:788–795.
  • [39] Xu J, Li J, Shan D, et al. Microstructural evolution and micro/meso-deformation behavior in pure copper processed by equal-channel angular pressing. Mater Sci Eng A [ Internet]. 2016;664:114–125.
  • [40] Shaeri MH, Shaeri M, Ebrahimi M, et al. Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog Nat Sci Mater Int [ Internet]. 2016;26(2):182–191.
  • [41] Zhao H, Pan Q, Qin Q, et al. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Mater Sci Eng A [ Internet]. 2019;751:70–79.
  • [42] Rao PN, Singh D, Jayaganthan R. Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Mater Des [ Internet]. 2014;56:97–104.
  • [43] Raju KS, Krishna MG, Padmanabhan KA, et al. Grain size and grain boundary character distribution in ultra-fine grained (ECAP) nickel. Mater Sci Eng A [ Internet]. 2008;491(1):1–7.
  • [44] Najafi S, Eivani AR, Samaee M, et al. A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloy. Mater Charact [ Internet]. 2018;136:60–68.
  • [45] Dyakonov GS, Yakovleva T V, Mironov SY, et al. Microstructure of the Advanced Titanium Alloy VT8M-1 Subjected to Rotary Swaging. Materials (Basel). 2023.
  • [46] Semiatin SL, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater Sci Eng A [ Internet]. 1999;263(2):257–271.
  • [47] Horita Z, Fujinami T, Nemoto M, et al. Improvement of mechanical properties for Al alloys using equal-channel angular pressing. J Mater Process Technol [ Internet]. 2001;117(3):288–292.
  • [48] Liu M, Chen J, Lin Y, et al. Microstructure, mechanical properties and wear resistance of an Al–Mg–Si alloy produced by equal channel angular pressing. Prog Nat Sci Mater Int [ Internet]. 2020;30(4):485–493.
  • [49] Lyashenko IA, Pham TH, Popov VL. Controlling the Friction Coefficient and Adhesive Properties of a Contact by Varying the Indenter Geometry. Processes. 2024.
  • [50] Chang Y-P, Liu C-T, Chu L-M, et al. Wear mechanisms of aluminum 5083/6061/7075 with and without T6 treatment. Adv Mech Eng [ Internet]. 2023;15(11):16878132231201000.
  • [51] Manjunath GK, Udaya Bhat K, Preetham Kumar G V, et al. Microstructure and Wear Performance of ECAP Processed Cast Al–Zn–Mg Alloys. Trans Indian Inst Met [ Internet]. 2018;71(8):1919–1931.
  • [52] Filippov A V, Tarasov SY, Filippova EO. The Effect of Ultrafine-Grained (UFG) Structure Formed by Equal-Channel Angular Pressing in AA7075 on Wear and Friction in Sliding against Steel and Ceramic Counterbodies. Metals (Basel). 2024.
  • [53] K R G, H SN. Impact of ECAP on wear performance of Al–Mn magnesium alloy. Mater Res Express [ Internet]. 2020;7(1):16550.
  • [54] Divya SP, Nagaraj M, Kesavamoorthy M, et al. Investigation on the Effect of ECAP Routes on the Wear Behavior of AA2014. Trans Indian Inst Met [ Internet]. 2018;71(1):67–77.
  • [55] Kaya H. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys. 2018;60(9):885–891.
  • [56] Tasci U, Yilmaz TA, Bostan B. Investigation of microstructure, wear and transverse rupture strength of WE43/nano B4C composites produced by powder metallurgy method. Tribol Int [ Internet]. 2023;180:108231.
  • [57] Taşcı U, Yılmaz TA, Karakoç H, et al. Enhancing Wear Resistance and Mechanical Behaviors of AA7020 Alloys Using Hybrid Fe3O4-GNP Reinforcement. Lubricants. 2024.
There are 57 citations in total.

Details

Primary Language English
Subjects Tribology, Material Characterization
Journal Section Tasarım ve Teknoloji
Authors

Taha Alper Yılmaz 0000-0002-4316-6890

Project Number FKB-2023-8648.
Early Pub Date May 20, 2025
Publication Date June 30, 2025
Submission Date March 19, 2025
Acceptance Date April 20, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Yılmaz, T. A. (2025). Enhancement of Microstructure Evolution and Tribological Properties of Al6063 Alloy Through Grain Refinement via ECAP Technique. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(2), 471-487. https://doi.org/10.29109/gujsc.1661391

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526