Research Article
BibTex RIS Cite

A research on high voltage cables consisting of different conductors having the same rated voltages

Year 2024, Volume: 14 Issue: 1, 236 - 248, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1292944

Abstract

Aluminum and copper conductors are commonly used in the transport of energy. In this work, high-voltage cables occurring aluminum and copper conductors exposed to the same rated voltage values were analyzed. In order to obtain the same current carrying capacity for copper and aluminum conductors, the relationship between the cross-sections has been determined and then the most appropriate cross-sectional values for each conductor were identified. Three different cross-sectional values have been selected for each conductor type and the calculations for the cables were carried out by using the Cable Ampacity Calculations Program (CYMCAP) within the framework of the International Electrotechnical Commission (IEC) standards. The performance of the cables has been compared in terms of material losses, cable structures and the cable costs. It is seen from the simulation results that aluminum conductor cables have lower cost and higher electrical loses than the copper conductor cables.

References

  • Alanne, K., & Cao, S. (2019). An overview of the concept and technology of ubiquitous energy. Applied Energy, 238, 284-302. https://doi.org/10.1016/j.apenergy.2019.01.100
  • Bustamante, S., Minguez, R., Arroyo, A., Manana, M., Laso, A., Castro, P., & Martinez, R. (2019). Thermal behaviour of medium-voltage underground cables under high load operating conditions. Applied Thermal Engineering, 156, 444-452. https://doi.org/10.1016/j.applthermaleng.2019.04.083
  • Casarino, T.G., Sharp, E., & Barrett, M. (2018). The impact of social and weather drivers on the historical electricity demand in Europe. Applied Energy, 229, 176-185. https://doi.org/10.1016/j.apenergy.2018.07.108
  • Fu, C., Liang, Y., Sun, Y., Li, Q., Zhao, Z., & Wang, J. (2021). Research on fast real-time calculation model for transient temperature rise of power cables in ducts. Energy Reports, 7(1), 239-245. https://doi.org/10.1016/j.egyr.2021.01.074
  • Huang, X., Zhang, J., Jiang, P., & Tanaka, T. (2019). Material progress toward recyclable insulation of power cables. Part 1: Polyethylene-based thermoplastic materials. IEEE Electrical Insulation Magazine, 35(5), 7-19. https://doi.org/10.1109/MEI.2019.8804330 Karaca, G. (2016). Multi-analysis of electrical and thermal stresses in cables by finite element method [Master's Thesis, Istanbul Technical University, Institute of Science and Technology]. Leon, F. (2006). Major factors affecting cable ampacity. 2006 IEEE Power Engineering Society General Meeting (pp. 1-6). https://doi.org/10.1109/PES.2006.1708875
  • Matuszak, M., Szuchnik, K., Koltun, M., Ratkowski, F., & Bonczkowska, A. (2019). Special bonding of metalic screens in medium voltage cable lines. Wiadomości Elektrotechniczne, 87(5), 26-30. https://doi.org/10.15199/74.2019.5.3
  • Mueller, C.E., Keil, S.I., & Bauer, C. (2019). Underground cables vs. overhead lines: Quasi-experimental evidence for the effects on public risk expectations, attitudes, and protest behavior. Energy Policy, 125, 456-466. https://doi.org/10.13140/RG.2.2.29785.21606
  • Olivares, J.C., Leon, F., Georgilakis, P.S., & Perez, R.E. (2010). Selection of copper aganist aluminum windings for distiribution transformers. IET Electric Power Applications, 4(6), 474-485. https://doi.org/10.1049/iet-epa. 2009.0297
  • Osman, I., Rahman, M.A., Mahbub, A.R., & Haque, A. (2014). Benefits of optimal size conductor in transmission system. 2014 IEEE International Conference on Advances in Electrical Engineering (ICAEE) (pp. 1-4). https://doi.org/10.1109/ICAEE.2014.6838524
  • Ratkowski, F., Kołtun, M., & Czapp, S. (2022). The effect of cable duct diameter on the ampacity of high-voltage power cables. Przegląd Elektrotechniczny, 98(3), 141-144. https://doi.org/10.15199/48.2022.03.32
  • Standard International. (2015). Power cables with extruded insulation and their accessories for rated voltages from 1kV(Um=1,2 kV) up to 30kV(Um=36kV) – Part 2: Cables for rated voltages from 6kV(Um=7,2kV) up to 30 kV(Um=36kV) (IEC 60502-2).
  • Taslak, E. (2014). Analyses of the electrical parameters of liquids used in high voltage technology [Master Thesis, Yıldız Technical University, Institute of Science and Technology].
  • Turkish Standardization Institute. (2007). Conductors of insulated cables (TS EN 60228).
  • Turkish Standardization Institute. (2003). Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General (TS IEC 60287-1-1).
  • Turkish Standardization Institute. (2015). Electric cables- Calculation of the current rating - Part 2:Thermal resistance-section 1:Calculation of thermal resistance (TS IEC 60287-2-1).
  • Turkish Standardization Institute. (2015). Electric cables - Calculation of the current rating - Part 3-1: Sections on operating conditions - Reference operating conditions and selection of cable type (TS IEC 60287-3-1+A1).
  • Turkish Standardization Institute. (2012). Electric cables - Calculation of the current rating - Part 3-2: Sections on operating conditions - Economic optimization of power cable size (TS IEC 60287-3-2).
  • Xiao, R., Fu, C., Liang, Y., & Wang J. (2022). Numerical calculation of cyclic load carrying capacity of direct buried cables considering thermoelectric coupling. 2022 IEEE 5th International Conference on Power and Energy Applications (ICPEA) (pp. 419-423). https://doi.org/10.1109/ICPEA56363.2022.10052436

Aynı anma gerilimlerine sahip farklı iletkenlerden oluşan yüksek gerilim kabloları üzerine bir araştırma

Year 2024, Volume: 14 Issue: 1, 236 - 248, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1292944

Abstract

Alüminyum ve bakır, enerjinin taşınmasında yaygın olarak kullanılan iletkenlerdir. Bu çalışmada, aynı anma gerilim değerlerine maruz bırakılan alüminyum ve bakır iletkenlerden meydana gelen yüksek gerilim kabloları analiz edilmiştir. Bakır ve alüminyum iletkenlerinin aynı akım taşıma kapasitesine sahip olabilmesi için kesitleri arasındaki ilişki tespit edilerek her bir iletken için en uygun kesit değerleri tanımlanmıştır. Her iletken tipi için üç adet farklı kesit değeri seçilmiş ve kablolara ait hesaplamalar International Electrotechnical Commission (IEC) standartları çerçevesinde Cable Ampacity Calculations (CYMCAP) programı kullanılarak gerçekleştirilmiştir. Kabloların aynı şartlar altındaki performansları malzemeden kaynaklı kayıplar, kabloları oluşturan yapılar ve kablo maliyetleri açısından mukayese edilmiştir. Alüminyum iletkenli kabloların bakır iletkenli kablolara göre toplam elektriksel kayıpları daha fazla iken maliyetlerinin daha az olduğu görülmüştür.

References

  • Alanne, K., & Cao, S. (2019). An overview of the concept and technology of ubiquitous energy. Applied Energy, 238, 284-302. https://doi.org/10.1016/j.apenergy.2019.01.100
  • Bustamante, S., Minguez, R., Arroyo, A., Manana, M., Laso, A., Castro, P., & Martinez, R. (2019). Thermal behaviour of medium-voltage underground cables under high load operating conditions. Applied Thermal Engineering, 156, 444-452. https://doi.org/10.1016/j.applthermaleng.2019.04.083
  • Casarino, T.G., Sharp, E., & Barrett, M. (2018). The impact of social and weather drivers on the historical electricity demand in Europe. Applied Energy, 229, 176-185. https://doi.org/10.1016/j.apenergy.2018.07.108
  • Fu, C., Liang, Y., Sun, Y., Li, Q., Zhao, Z., & Wang, J. (2021). Research on fast real-time calculation model for transient temperature rise of power cables in ducts. Energy Reports, 7(1), 239-245. https://doi.org/10.1016/j.egyr.2021.01.074
  • Huang, X., Zhang, J., Jiang, P., & Tanaka, T. (2019). Material progress toward recyclable insulation of power cables. Part 1: Polyethylene-based thermoplastic materials. IEEE Electrical Insulation Magazine, 35(5), 7-19. https://doi.org/10.1109/MEI.2019.8804330 Karaca, G. (2016). Multi-analysis of electrical and thermal stresses in cables by finite element method [Master's Thesis, Istanbul Technical University, Institute of Science and Technology]. Leon, F. (2006). Major factors affecting cable ampacity. 2006 IEEE Power Engineering Society General Meeting (pp. 1-6). https://doi.org/10.1109/PES.2006.1708875
  • Matuszak, M., Szuchnik, K., Koltun, M., Ratkowski, F., & Bonczkowska, A. (2019). Special bonding of metalic screens in medium voltage cable lines. Wiadomości Elektrotechniczne, 87(5), 26-30. https://doi.org/10.15199/74.2019.5.3
  • Mueller, C.E., Keil, S.I., & Bauer, C. (2019). Underground cables vs. overhead lines: Quasi-experimental evidence for the effects on public risk expectations, attitudes, and protest behavior. Energy Policy, 125, 456-466. https://doi.org/10.13140/RG.2.2.29785.21606
  • Olivares, J.C., Leon, F., Georgilakis, P.S., & Perez, R.E. (2010). Selection of copper aganist aluminum windings for distiribution transformers. IET Electric Power Applications, 4(6), 474-485. https://doi.org/10.1049/iet-epa. 2009.0297
  • Osman, I., Rahman, M.A., Mahbub, A.R., & Haque, A. (2014). Benefits of optimal size conductor in transmission system. 2014 IEEE International Conference on Advances in Electrical Engineering (ICAEE) (pp. 1-4). https://doi.org/10.1109/ICAEE.2014.6838524
  • Ratkowski, F., Kołtun, M., & Czapp, S. (2022). The effect of cable duct diameter on the ampacity of high-voltage power cables. Przegląd Elektrotechniczny, 98(3), 141-144. https://doi.org/10.15199/48.2022.03.32
  • Standard International. (2015). Power cables with extruded insulation and their accessories for rated voltages from 1kV(Um=1,2 kV) up to 30kV(Um=36kV) – Part 2: Cables for rated voltages from 6kV(Um=7,2kV) up to 30 kV(Um=36kV) (IEC 60502-2).
  • Taslak, E. (2014). Analyses of the electrical parameters of liquids used in high voltage technology [Master Thesis, Yıldız Technical University, Institute of Science and Technology].
  • Turkish Standardization Institute. (2007). Conductors of insulated cables (TS EN 60228).
  • Turkish Standardization Institute. (2003). Electric cables - Calculation of the current rating - Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General (TS IEC 60287-1-1).
  • Turkish Standardization Institute. (2015). Electric cables- Calculation of the current rating - Part 2:Thermal resistance-section 1:Calculation of thermal resistance (TS IEC 60287-2-1).
  • Turkish Standardization Institute. (2015). Electric cables - Calculation of the current rating - Part 3-1: Sections on operating conditions - Reference operating conditions and selection of cable type (TS IEC 60287-3-1+A1).
  • Turkish Standardization Institute. (2012). Electric cables - Calculation of the current rating - Part 3-2: Sections on operating conditions - Economic optimization of power cable size (TS IEC 60287-3-2).
  • Xiao, R., Fu, C., Liang, Y., & Wang J. (2022). Numerical calculation of cyclic load carrying capacity of direct buried cables considering thermoelectric coupling. 2022 IEEE 5th International Conference on Power and Energy Applications (ICPEA) (pp. 419-423). https://doi.org/10.1109/ICPEA56363.2022.10052436
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Bahadır Çetinkaya 0000-0003-3378-4561

Sümeyya Yıldırım 0000-0002-2639-7195

Murat Gürek 0000-0001-5803-0550

Publication Date March 15, 2024
Submission Date May 5, 2023
Acceptance Date December 27, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Çetinkaya, M. B., Yıldırım, S., & Gürek, M. (2024). A research on high voltage cables consisting of different conductors having the same rated voltages. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 236-248. https://doi.org/10.17714/gumusfenbil.1292944