Research Article
BibTex RIS Cite

Operator inequalities via accretive transforms

Year 2024, Volume: 53 Issue: 1, 40 - 52, 29.02.2024
https://doi.org/10.15672/hujms.1160533

Abstract

In this article, we employ certain properties of the transform $C_{M,m}(A)=(MI-A^*)(A-mI)$ to obtain new inequalities for the bounded linear operator $A$ on a complex Hilbert space $\mathcal{H}$. In particular, we obtain new relations among $|A|,|A^*|,|\mathfrak{R}A|$ and $|\mathfrak{I}A|$. Further numerical radius inequalities that extend some known inequalities will be presented too.

References

  • [1] Y. Bedrani, F. Kittaneh and M. Sababheh, From positive to accretive matrices, Positivity 25, 1601–1629, 2021.
  • [2] Y. Bedrani, F. Kittaneh and M. Sababheh, Numerical radii of accretive matrices, Linear Multilinear Algebra 69, 957–970, 2021.
  • [3] Y. Bedrani, F. Kittaneh and M. Sababheh, On the weighted geometric mean of accretive matrices, Ann. Funct. Anal. 12 (1), 2, 2021.
  • [4] Y. Bedrani, F. Kittaneh and M. Sababheh, Accretive matrices and matrix convex functions, Results Math. 77, 52, 2022.
  • [5] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
  • [6] R. Bhatia, Positive definite matrices, Princeton Univ. Press, Princeton, 2007.
  • [7] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, 2022.
  • [8] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308, 203–211, 2000.
  • [9] M.D. Choi, A Schwarz inequality for positive linear maps on $C^*$-algebras, Illinois J. Math. 18, 565–574, 1974.
  • [10] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc. 8, 42–44, 1957.
  • [11] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces, Linear Algebra Appl. 428, 2750–2760, 2008.
  • [12] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, Springer Cham, 2013.
  • [13] S. Drury, Principal powers of matrices with positive definite real part, Linear Multilinear Algebra 63, 296–301, 2015.
  • [14] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices 8, 1143–1148, 2014.
  • [15] C.-K. Fong and J.A.R. Holbrook, Unitarily invariant operator norms, Can. J. Math. 35, 274–299, 1983.
  • [16] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric method in operator inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
  • [17] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer, New York, 1997.
  • [18] P.R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
  • [19] R.A. Horn and C.R. Johnson, Topics in matrix analysis, Cambridge University Press, 1991.
  • [20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168, 73–80, 2005.
  • [21] M. Lin, Some inequalities for sector matrices. Oper. Matrices 10, 915–921, 2016.
  • [22] H.R. Moradi, S. Furuichi and M. Sababheh, Some operator inequalities via convexity, Linear Multilinear Algebra 70 (22), 7740–7752, 2022. Doi: 10.1080/03081087.2021.2006592.
  • [23] H.R. Moradi, M.E. Omidvar, I.H. Gümüs and R. Naseri, A note on some inequalities for positive linear maps, Linear Multilinear Algebra 66 (7), 1449–1460, 2018.
  • [24] M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl. 433, 136–142, 2010.
  • [25] M. Raïssouli, M.S. Moslehian and S. Furuichi, Relative entropy and Tsallis entropy of two accretive operators, C. R. Acad. Sci. Paris Ser. I 355, 687–693, 2017.
  • [26] P.Y. Wu and H.-L. Gau, Numerical ranges of Hilbert space operators, Encyclopedia of Mathematics and its Applications, 179, Cambridge University Press, Cambridge, 2021.
Year 2024, Volume: 53 Issue: 1, 40 - 52, 29.02.2024
https://doi.org/10.15672/hujms.1160533

Abstract

References

  • [1] Y. Bedrani, F. Kittaneh and M. Sababheh, From positive to accretive matrices, Positivity 25, 1601–1629, 2021.
  • [2] Y. Bedrani, F. Kittaneh and M. Sababheh, Numerical radii of accretive matrices, Linear Multilinear Algebra 69, 957–970, 2021.
  • [3] Y. Bedrani, F. Kittaneh and M. Sababheh, On the weighted geometric mean of accretive matrices, Ann. Funct. Anal. 12 (1), 2, 2021.
  • [4] Y. Bedrani, F. Kittaneh and M. Sababheh, Accretive matrices and matrix convex functions, Results Math. 77, 52, 2022.
  • [5] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
  • [6] R. Bhatia, Positive definite matrices, Princeton Univ. Press, Princeton, 2007.
  • [7] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, 2022.
  • [8] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308, 203–211, 2000.
  • [9] M.D. Choi, A Schwarz inequality for positive linear maps on $C^*$-algebras, Illinois J. Math. 18, 565–574, 1974.
  • [10] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc. 8, 42–44, 1957.
  • [11] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces, Linear Algebra Appl. 428, 2750–2760, 2008.
  • [12] S.S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer Briefs in Mathematics, Springer Cham, 2013.
  • [13] S. Drury, Principal powers of matrices with positive definite real part, Linear Multilinear Algebra 63, 296–301, 2015.
  • [14] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices 8, 1143–1148, 2014.
  • [15] C.-K. Fong and J.A.R. Holbrook, Unitarily invariant operator norms, Can. J. Math. 35, 274–299, 1983.
  • [16] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric method in operator inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
  • [17] K.E. Gustafson and D.K.M. Rao, Numerical range, Springer, New York, 1997.
  • [18] P.R. Halmos, A Hilbert space problem book, 2nd ed., Springer, New York, 1982.
  • [19] R.A. Horn and C.R. Johnson, Topics in matrix analysis, Cambridge University Press, 1991.
  • [20] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168, 73–80, 2005.
  • [21] M. Lin, Some inequalities for sector matrices. Oper. Matrices 10, 915–921, 2016.
  • [22] H.R. Moradi, S. Furuichi and M. Sababheh, Some operator inequalities via convexity, Linear Multilinear Algebra 70 (22), 7740–7752, 2022. Doi: 10.1080/03081087.2021.2006592.
  • [23] H.R. Moradi, M.E. Omidvar, I.H. Gümüs and R. Naseri, A note on some inequalities for positive linear maps, Linear Multilinear Algebra 66 (7), 1449–1460, 2018.
  • [24] M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl. 433, 136–142, 2010.
  • [25] M. Raïssouli, M.S. Moslehian and S. Furuichi, Relative entropy and Tsallis entropy of two accretive operators, C. R. Acad. Sci. Paris Ser. I 355, 687–693, 2017.
  • [26] P.Y. Wu and H.-L. Gau, Numerical ranges of Hilbert space operators, Encyclopedia of Mathematics and its Applications, 179, Cambridge University Press, Cambridge, 2021.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

İbrahim Halil Gümüş 0000-0002-3071-1159

Hamid Reza Moradı 0000-0002-0233-0455

Mohammad Sababheh 0000-0002-1321-2702

Early Pub Date January 10, 2024
Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 53 Issue: 1

Cite

APA Gümüş, İ. H., Moradı, H. R., & Sababheh, M. (2024). Operator inequalities via accretive transforms. Hacettepe Journal of Mathematics and Statistics, 53(1), 40-52. https://doi.org/10.15672/hujms.1160533
AMA Gümüş İH, Moradı HR, Sababheh M. Operator inequalities via accretive transforms. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):40-52. doi:10.15672/hujms.1160533
Chicago Gümüş, İbrahim Halil, Hamid Reza Moradı, and Mohammad Sababheh. “Operator Inequalities via Accretive Transforms”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 40-52. https://doi.org/10.15672/hujms.1160533.
EndNote Gümüş İH, Moradı HR, Sababheh M (February 1, 2024) Operator inequalities via accretive transforms. Hacettepe Journal of Mathematics and Statistics 53 1 40–52.
IEEE İ. H. Gümüş, H. R. Moradı, and M. Sababheh, “Operator inequalities via accretive transforms”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 40–52, 2024, doi: 10.15672/hujms.1160533.
ISNAD Gümüş, İbrahim Halil et al. “Operator Inequalities via Accretive Transforms”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 40-52. https://doi.org/10.15672/hujms.1160533.
JAMA Gümüş İH, Moradı HR, Sababheh M. Operator inequalities via accretive transforms. Hacettepe Journal of Mathematics and Statistics. 2024;53:40–52.
MLA Gümüş, İbrahim Halil et al. “Operator Inequalities via Accretive Transforms”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 40-52, doi:10.15672/hujms.1160533.
Vancouver Gümüş İH, Moradı HR, Sababheh M. Operator inequalities via accretive transforms. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):40-52.